Линейная алгебра и геометрия на ПМИ 2025/2026 (пилотный поток)

Материал из Wiki - Факультет компьютерных наук
Перейти к: навигация, поиск

Преподаватели и учебные ассистенты

Группа БПМИ251 БПМИ252 БПМИ253 БПМИ254 БПМИ255
Лектор Дима Трушин
Семинарист Дима Трушин Юля Зайцева Дима Трушин Антон Трушин Михаил Игнатьев
Ассистент Хаким Вердиев и Дмитрий Калугин Антон Ныйкин и Вова Родин Михаил Бугрышев и Андрей Павлов Юлия Баранова и Катя Тюрина Елизавета Жукова и Анастасия Одинцова

Расписание консультаций

Преподаватель/ассистент понедельник вторник среда четверг пятница суббота воскресенье
1
Дима Трушин 17:00-20:00 S812
2
Юля Зайцева
3
Михаил Игнатьев
4
Антон Трушин
* Просьба предупреждать, если планируете прийти, возможны изменения

Формы контроля знаний студентов

  • Коллоквиум
  • Контрольная работа
  • Большие домашние задания (делящиеся на индивидуальные домашние задания и лабораторные работы)
  • Активность и работа на семинарах
  • Экзамен

Бонус к накопленной оценке:

  • Устная сдача задач из листков

Порядок формирования итоговой оценки

2-й модуль

Формула для накопленной оценки:

Oнакопленная = 0,36 * Околл + 0,25 * Oк/р + 0,25 * Oд/з + 0,14 * Oсем + 0,1 * Oл,

где Околл — оценка за коллоквиум, Oк/р — оценка за контрольную работу, Oд/з — оценка за большие домашние задания, Oсем — оценка за работу на семинарах и Oл — оценка за сдачу задач из листков.

Формула для итоговой оценки:

Oитоговая = 0,7 * Oнакопленная + 0,3 * Оэкз.

В этой формуле используется неокруглённое значение накопленной оценки. Способ округления итоговой оценки — арифметический.

4-й модуль

Формула для накопленной оценки:

Oнакопленная = 0,36 * Околл + 0,25 * Oк/р + 0,25 * Oд/з + 0,14 * Oсем + 0,1 * Oл,

где Околл — оценка за коллоквиум, Oк/р — оценка за контрольную работу, Oд/з — оценка за большие домашние задания, Oсем — оценка за работу на семинарах и Oл — оценка за сдачу задач из листков.

Формула для итоговой оценки:

Oитоговая = 0,7 * Oнакопленная + 0,3 * Оэкз.

В этой формуле используется неокруглённое значение накопленной оценки. Способ округления итоговой оценки — арифметический.

Итоговая оценка за курс -- оценка за 4-ый модуль.

Краткое содержание лекций

1-2 модули

Лекция 1 (03.09.2025). Системы линейных уравнений. Алгоритм Гаусса. Матрицы и матричные операции.

Лекция 2 (10.09.2025). Дефекты матричных операций. Связь с линейными уравнениями. Деление и обратимость матриц. Левая и правая обратная, двусторонняя обратимость только для квадратных матриц. Матрицы элементарных преобразований. Невырожденность матриц: 6 эквивалентных определений.

Лекция 3 (17.09.2025) Следствия 6 эквивалентных определений. Массовое решение систем. Поиск обратной матрицы Гауссом. Блочные формулы умножения матриц. Метод восстановления главных переменных через множество решений. Единственность улучшенного ступенчатого вида матрицы. Классификация систем с одинаковым множеством решений.

Лекция 4 (24.09.2024) Полиномиальное исчисление от матриц. Существование многочлена зануляющего матрицу. Спектр матрицы. Минимальный многочлен и его связь со спектром. Наивная оценка на степень минимального многочлена.

Лекция 5 (01.10.2025) Перестановки. Операция на перестановках. Правила переименования. Циклы. Знак перестановки. Существование и единственность знака перестановки.

Лекция 6 (08.10.2025) Три подхода к определителям: (I) явная формула с помощью перестановок, (II) полилинейность и кососимметричность по строкам (или столбцам), (III) согласованность с умножением. Вычисление по явной формуле для верхнетреугольных матриц и в случае размерностей 2 и 3. Определитель транспонированной матрицы. Полилинейность определителя (импликация (I)=>(II)). Определитель элементарных матриц. Классификация полилинейных отображений. Доказательство импликации (II)=>(I).

Лекция 7 (15.10.2025) Мультипликативность определителя (импликация (II)=>(III)), определитель с углом нулей и определитель блочно верхнетреугольной матрицы. Импликация (III)=>(I). Миноры и алгебраические дополнения, присоединенная матрица. Разложение определителя по строке или столбцу. Явные формулы для обратной матрицы. Формулы Крамера.

3-4 модули

Листки с задачами

Задачи из листков можно сдавать любому семинаристу по данному предмету (в том числе с основного потока) в часы его консультаций или по договорённости.

Правила сдачи и оценивания задач из листков:

  • каждый пункт в листке считается отдельной задачей
  • сдача задачи возможна только при наличии её решения в письменном виде
  • результатом сдачи одной задачи может быть 0 или 1

Листок 1. Матричные алгебры Ли

Сроки сдачи листка 1:

задачи принимаются в период с момента выдачи листка по 24 октября включительно

в период с 18 по 24 октября включительно одному студенту разрешается сдать не более шести задач

Индивидуальные домашние задания

Общие сведения

ИДЗ 1

ИДЗ 2

Лабораторные работы

Контрольные работы

2-й модуль

4-й модуль

Коллоквиумы

2-й модуль

4-й модуль

Экзамен

2-й модуль

4-й модуль

Ведомости текущего контроля

1-2 модули

Результаты проверки больших домашних заданий

251 252 253 254 255

Результаты сдачи задач из листков

251 252 253 254 255

3-4 модули

Ссылки

  • Общие
  1. Канал в Telegram
  2. Лекции на github.
  3. Алгоритмы на github.
  • Группы 251 и 253
  1. Группа в Telegram
  2. Материалы семинаров и домашние задания

Литература

Учебники

  • Э.Б. Винберг. Курс алгебры. М.: Факториал, 1999 (или любое последующее издание)
  • А.И. Кострикин. Введение в алгебру. Часть I. Основы алгебры. М.: Физматлит, 1994
  • А.И. Кострикин. Введение в алгебру. Часть II. Линейная алгебра. М.: Физматлит, 2000
  • S. Axler. Linear Algebra Done Right, Second Edition, Springer, 1997 (или любое последующее издание)

Сборники задач

  • Сборник задач по алгебре под редакцией А.Н. Кострикина. Новое издание. М.: МЦНМО, 2009.
  • И.В. Проскуряков. Сборник задач по линейной алгебре (любое издание, например М.: БИНОМ, 2005)
  • Г.Д. Ким, Л.В. Крицков. Алгебра и аналитическая геометрия. Теоремы и задачи. Том I. М.: "Планета знаний", 2007.