KKTI-22-23
Содержание
- 1 Комбинаторные конструкции в теоретической информатике (3-ий курс ТИ) 2023 год
Комбинаторные конструкции в теоретической информатике (3-ий курс ТИ) 2023 год
Лекции проходят по вторникам 11:10-12:30 ауд. N507, семинары также по вторникам 13:00-14:20 ауд. N507
zoom: https://us02web.zoom.us/j/82025733297?pwd=Znd2enF2S080Sk5LbjM0dndLWEFOdz09
Лектор: Верещагин Николай Константинович, nikolay.vereshchagin@gmail.com
Семинарист: Милованов Алексей Сергеевич almas239@gmail.com, телеграм: AlexeySMilovanov
Группа в Телеграм: https://t.me/+KV_zm22fF8FjMGYy
Новости
Выложено первое домашнее задание.
Первая лекция и семинар 17 января!
Краткое описание
Экспандеры и их применения: теорема Рейнгольда о разрешимости связности для неориентированных графов на логарифмической памяти, построение генераторов псевдослучайных чисел, экспандерные коды.
Коды с исправлением ошибок для компьютерных наук.
Отчётность по курсу и критерии оценки
Итоговая оценка складывается из оценок за домашние задания и оценок за коллоквиум и экзамен. Оценки за колллоквиум и экзамен входят в итоговую оценку с коэффициентом 0.4, а оценка за домашние задания - с коэффициентом 0.2.
В домашних заданиях иногда будут бонусные задания. За каждую решеннную бонусную задачу к итоговой оценке будет прибавляться 0.5 балла.
Домашние задания
В течение двух модулей студентам будет дано 4 домашних задания. Оценка за каждое домашнее задание равна доле решенных задач, умноженной на 10. Общая оценка за домашние задания равна среднему арифметическому оценок за решение каждого из заданий. На решение каждого ДЗ дается не менее 14 дней, решение ДЗ нужно сдавать семинаристу. Сдача домашних заданий после их срока невозможна.
Коллоквиум и письменный экзамен
Коллоквиум (устный) и экзамен (письменный) проводятся в конце второго модуля и оцениваются по десятибалльной системе.
Те, кто не смог прийти на коллоквиум по болезни, могут его сдать отдельно в день пересдачи (один раз). Это же относится и к тем, кто не смог прийти на экзамен. На пересдачу также могут прийти те, кто в итоге получил менее 4 баллов. Те, кто после всех пересдач получил итоговую оценку менее 4 баллов, сдают устный экзамен комиссии, в этом случае все полученные ранее оценки аннулируются и оценка, полученная на экзамене, является окончательной.
Правила округления
В вычислениях текущие оценки и промежуточные величины не округляются. Результат вычисляется точно и округляется (арифметически) только в момент выставления итоговой оценки.
Коллоквиум
Предварительная дата: 13 июня Программа коллоквиума.
Экзамен
Предварительная дата: 21 июня (сессия с 21 по 30 июня)
Пересдачи
Пересдачи состоятся ... . Пересдача комиссии ... .
Пересдать можно коллоквиум и/или письменный экзамен (ранее полученная оценка при этом аннулируется).
Примерные сроки контрольных мероприятий
Первое домашнее будет выложено 11 февраля, срок сдачи 7 марта.
Второе домашнее будет выложено 25 марта, крайний срок сдачи 15 апреля.
Третье домашнее будет выложено 22 апреля, крайний срок сдачи 13 мая.
Четвертое домашнее будет выложено 27 мая, крайний срок сдачи - 17 июня.
Домашние задания
Домашнее задание 1 Срок сдачи: 7.03.2023
Результаты
Прочитанные лекции
Лекция 1 (17 января).
Определение комбинаторного однородного экспандера. Существование (вероятностное доказательство). Реберное расширение и его связь с вершинным расширением.
Лекция 2 (24 января).
Матрица графа и ее собственные числа. Максимальное по абсолютной величине собственное число регулярного графа. От спектрального экспандера к комбинаторному. Лемма о перемешивании.
Лекция 3 (31 января).
Нижняя оценка sqrt(d) на второе собственное число d-регулярного графа. Нижняя оценка 2sqrt(d-1)-o(1) на второе собственное число d-регулярного графа.
Вероятностное доказательство существования d-регулярного спектрального экспандера с d^c вершинами (начало).
Лекция 4 (7 февраля).
Вероятностное доказательство существования d-регулярного спектрального экспандера с d^c вершинами (завершение). Степень графа и тензорное произведение графов и их собственные числа. Зигзаг-произведение графов и первая оценка его собственных чисел (начало). Видеозапись лекции: https://www.youtube.com/watch?v=0sKCkrV0jeY
Лекция 5 (14 февраля).
Первая оценка собственных чисел зигзаг произведения (окончание). Первая рекурсивная конструкция спектрального экспандера со сколь угодно большим количеством вершин. Вторая рекурсивная конструкция спектрального экспандера со сколь угодно большим количеством вершин. Вторая оценка для спектрального зазора зигзаг-произведения.
Лекция 6 (21 февраля).
Второе собственное число связного недвудольного графа.
Алгоритм Рейнгольда.
Лекция 7 (28 февраля).
Применение экспандеров для дерандомизации.
Планируемые лекции
Лекция 8 (7 марта).
Экспандер Маргулиса.
Лекция 9 (14 марта).
Двудольные экспандеры: определение и вероятностное доказательство существования.
Лекция 10 (21 марта).
Экспандер Варди - Парвареша.
Лекция 11 (4 апреля).
Коды с исправлением ошибок и их параметры. Оценка Синглтона и коды Рида - Соломона. Декодирование кодов Рида - Соломона за полиномиальное время.
Лекция 12 (11 апреля).
Оценка Хэмминга. Линейные коды, проверочная матрица. Коды Хэмминга. Кодирование и декодирование для кодов Хэмминга.
Лекция 13 (18 апреля)
Функция Шеннона и графики оценок Хэмминга и Гилберта для произвольного алфавита. Оценка Варшамова - Гилберта. Случайные линейные коды. Коды Возенкрафта.
Каскадные коды.
Лекция 14 (25 апреля)
Каскадные коды. Декодирование каскадного кода. Коды Форни.
Лекция 15. (16 мая)
Экспандерные коды: определение, последовательный алгоритм декодирования. Первая оценка Плоткина для двоичного алфавита.
Лекция 16 (23 мая)
Оценки Плоткина и коды Адамара. Декодирование списком: определение и аналоги оценок Хэмминга и Гилберта.
Лекция 17 (30 мая )
Доказательство оценки Гилберта для декодирования списком. Улучшение оценки Синглтона для обычного декодирования с исправлением ошибок. Оценки Джонсона и Элайеса - Бассалыго.
Лекция 18 (6 июня).
Композиция кодов Рида - Соломона и Адамара и его декодирование списком.
Семинары
Семинар 1 (17 января)
Листок 1 (комбинаторные экспандеры)
Семинар 2 (24 января)
Семинар 3 (31 января)
Семинар 4 (7 февраля)
Семинар 5 (14 февраля)
Семинар 6 (21 февраля)
Семинар 7 (28 февраля)
Семинар 8 (7 марта)
Семинар 9 (14 марта)
Конспекты лекций
Конспекты лекций об экспандерах, полученные переработкой книги Ромащенко
Конспект лекций о кодах с исправлением ошибок (переработанная версия брошюры Ромащенко, Румянцева, Шеня. "Заметки по теории кодирования."