Dopglavy DM 1920 — различия между версиями

Материал из Wiki - Факультет компьютерных наук
Перейти к: навигация, поиск
Строка 5: Строка 5:
 
<span style="color:red">Занятие 16.10.19 не состоится!</span> <br>
 
<span style="color:red">Занятие 16.10.19 не состоится!</span> <br>
  
Дедлайн по домашним заданиям: 04.12.19
+
Дедлайн по домашним заданиям: 04.12.19 <br>
 +
 
 +
Экзамен будет проходить на неделе с 16 декабря по 20 декабря. Будет доступно несколько возможностей по времени.
  
 
== Расписание ==
 
== Расписание ==

Версия 14:26, 28 ноября 2019

Общая информация

Правила выставления оценок

Занятие 16.10.19 не состоится!

Дедлайн по домашним заданиям: 04.12.19

Экзамен будет проходить на неделе с 16 декабря по 20 декабря. Будет доступно несколько возможностей по времени.

Расписание

Первое занятие пройдет 18 сентября с 16:40 до 18:00 в ауд. R306.
Последующие занятия будут проходить по средам с 16:40 до 18:00 в ауд. D510.

Материалы курса

Дата Summary Домашнее задание
18.09.19 Числа Каталана. Рекурсивное определение и определение через баланс скобок, их эквивалентность. Рекуррентная формула для чисел Каталана. Выводы формулы для чисел Каталана: метод отражений. Листок 1
25.09.19 Логика высказываний, ее корректность. Лемма о дедукции. Листок 2
02.10.19 Замкнутые классы булевых функций. Теорема Поста. Листок 3
9.10.19 Лемма Шпернера. Теорема Брауэра. Листок 4
30.10.19 Вполне упорядоченные множества, их свойства. Начальные отрезки, их свойства. Теорема о рекурсии, формулировка. Листок 5
06.11.19 Теорема о рекурсии, доказательство. Из двух вполне упорядоченных множеств одно изоморфно начальному отрезку другого. Теорема Цермело. Тот же листок
13.11.19 Разбиение булевого куба на симметричные плотные цепи, приложение. Теорема Шпернера, LYM неравенство. Листок 6
20.11.19 Гамильтоновы графы. Теорема Бонди-Хватала. Теорема Хватала о степенных последовательностях. Листок 7
27.11.19 Потоки и разрезы. Теорема Форда-Фалкерсона. Листок 8

Источники

Числа Каталана: Черновик учебника по дискретной математике
Логика высказываний: Верещагин, А. Шень, Языки и исчисления.
Замкнутые классы булевых функций: Верещагин, А. Шень, Языки и исчисления.
Лемма Шпернера, теорема Брауэра: http://math.mit.edu/~fox/MAT307-lecture03.pdf
Вполне упорядоченные множества: Верещагин, А. Шень, Начала теории множеств.
Цепи и антицепи: Stasys Jukna, Extremal Combinatorics
Теорема Бонди-Хватала: http://freeusermanuals.com/backend/web/manuals/1521810604HamiltonBondyAndChvatal.pdf
Теорема Хватала: Р. Дистель, Теория графов

Результаты

Таблица результатов