Машинное обучение в экономике онлайн магистратура 2024-2025 — различия между версиями

Материал из Wiki - Факультет компьютерных наук
Перейти к: навигация, поиск
(Неделя 2. Метод ближайших соседей)
(Основные материалы)
Строка 91: Строка 91:
 
[https://colab.research.google.com/drive/1a2sgrKj_ap58JKRixlG2xvopTmV7dU_8?usp=sharing Код семинара]
 
[https://colab.research.google.com/drive/1a2sgrKj_ap58JKRixlG2xvopTmV7dU_8?usp=sharing Код семинара]
  
[https://github.com/bogdanpotanin/Machine-Learning/blob/main/%D0%A1%D0%B5%D0%BC%D0%B8%D0%BD%D0%B0%D1%80%202.%20%D0%9C%D0%B5%D1%82%D0%BE%D0%B4%20%D0%B1%D0%BB%D0%B8%D0%B6%D0%B0%D0%B9%D1%88%D0%B8%D1%85%20%D1%81%D0%BE%D1%81%D0%B5%D0%B4%D0%B5%D0%B9.pdf Задачи семинара]
+
=== Дополнительные материалы ===
 +
 
 +
[https://github.com/bogdanpotanin/Machine-Learning/blob/main/%D0%A1%D0%B5%D0%BC%D0%B8%D0%BD%D0%B0%D1%80%202.%20%D0%9C%D0%B5%D1%82%D0%BE%D0%B4%20%D0%B1%D0%BB%D0%B8%D0%B6%D0%B0%D0%B9%D1%88%D0%B8%D1%85%20%D1%81%D0%BE%D1%81%D0%B5%D0%B4%D0%B5%D0%B9.pdf Задачи для самостоятельного решения]
  
 
=== Рекомендуемая литература ===
 
=== Рекомендуемая литература ===

Версия 21:27, 25 апреля 2025

Материалы для повторения

Викистранички курсов по теории вероятностей и математической статистике:

Видео про применение python в математической статистике:

Информация о курсе

Оценка = 0.01 * ДЗ1 + 0.29 * ДЗ2 + 0.7 * Экзамен

Домашнее задание

Домашнее задание 1

Дедлайн: 18 мая

Необходимо внести данные группы (до трех человек включительно), в которой будет выполняться второе домашнее задание, в таблицу (ссылка появится позже).

Домашнее задание 2

Дедлайн: 1 июня

Информация об оформлении и формате сдачи домашней работы указана в тексте задания (появится позже).

Экзамен

Дата: будет объявлена позже

Экзамены прошлых лет

Первый пример экзамена с решениями 2023-2024, бакалавриат

Второй пример экзамена с решениями, 2023-2024, бакалавриат

Экзамен 2023-2024 с решениями, бакалавриат

Экзамен 2024-2025 с решениями, магистратура

Консультации

Консультация перед экзаменом на лекции 2023-2024

Консультация о генерации данных для домашней работы 2023-2024

Неделя 0. Введение в машинное обучение

Основные материалы

Слайды лекции

Неделя 1. Байесовские сети

Основные материалы

Слайды лекции

Код семинара

Дополнительные материалы

Задачи для самостоятельного решения

Рекомендуемая литература

1. FOML глава 6.

2. MLPP глава 10.

Неделя 2. Метод ближайших соседей

Основные материалы

Слайды лекции

Код семинара

Дополнительные материалы

Задачи для самостоятельного решения

Рекомендуемая литература

1. FOML глава 5.

2. MLPP глава 16.

Неделя 3. Деревья

Основные материалы

Слайды лекции

Код семинара

Задачи семинара

Рекомендуемая литература

1. FOML глава 4.

Список литературы

  1. FOML - Fundamentals of machine learning for predictive data analytics. John D. Kelleher, Brian Mac Namee, Aoife D'Arcy. Низкая сложность
  2. HBE - Econometrics. Hansen B. Средняя сложность
  3. CMLE - Applied Causal Inference Powered by ML and AI. V. Chernozhukov, C. Hansen, N. Kallus, M. Spindler, V. Syrgkanis Средняя сложность
  4. MLPP - Machine learning a probabilistic perspective. Kevin P. Murphy. Высокая сложность