НИС Методы и алгоритмы защиты информации 2022/2023 — различия между версиями

Материал из Wiki - Факультет компьютерных наук
Перейти к: навигация, поиск
Строка 149: Строка 149:
 
|| [K, Гл. VI, пар. 1], [П, гл. 4]
 
|| [K, Гл. VI, пар. 1], [П, гл. 4]
 
|| Хворостяной Валерий
 
|| Хворостяной Валерий
 +
|| 06.12
 +
|| 9
 
|-
 
|-
  
Строка 155: Строка 157:
 
|| [K, Гл. VI, пар. 2]
 
|| [K, Гл. VI, пар. 2]
 
|| Нечесов Андрей
 
|| Нечесов Андрей
 +
|| 06.12
 +
|| 10
 
|-
 
|-
 
   
 
   
Строка 161: Строка 165:
 
|| [K, Гл. VI, пар. 3-4],  [В, Гл. 4]
 
|| [K, Гл. VI, пар. 3-4],  [В, Гл. 4]
 
|| Сайфутдинов Рафаэль
 
|| Сайфутдинов Рафаэль
 +
|| 06.12
 +
|| 10
 
|-
 
|-
 
|}
 
|}

Версия 16:52, 6 декабря 2022

О семинаре

Цель семинара – познакомить участников с основными понятиями, методами и алгоритмами криптографии и теории кодирования. Параллельно мы обсуждаем необходимые сведения из алгебры, теории чисел и дискретной математики. Семинар проходит в форме докладов участников с их последующим обсуждением. Участие в семинаре позволит освоить современные методы защиты и передачи информации. Также будут даны многочисленные примеры практического использования материала, излагаемого в базовых математических курсах.

Семинар проводится для студентов 2 курса в 1-3 модулях.

Преподаватель

Аржанцев Иван Владимирович, arjantsev@hse.ru

Учебные ассистенты

Коннов Илья. t.me/iliago, vk.com/iliago, iakonnov@edu.hse.ru

Полезные ссылки

Таблица с оценками

Классрум для сдачи домашних заданий

План семинара

Криптография

Тема доклада Литература Докладчик Дата доклада Оценка
1 Простейшие криптосистемы. Сдвиг и аффинное преобразование. Частотный анализ. Биграммы. Ключ шифрования и ключ дешифрования. Классические криптосистемы и системы с открытым ключом [К, Гл. III, пар. 1 и Гл. IV, пар. 1] Гудошникова Юлия 27.09 8
2 Необходимые факты из теории чисел: обратимость вычета по данному модулю, алгоритм нахождения обратного элемента, малая теорема Ферма, функция Эйлера и теорема Эйлера, китайская теорема об остатках, методы быстрого возведения в степень [K, Гл. I] Галкина Таисия 27.09 8
3 Квадратичные вычеты и закон взаимности [K, Гл. II, пар. 2] Порфирьев Антон 04.10 10
4 Необходимые сведения из алгебры: группы и подгруппы, примеры конечных групп, порядок элемента, циклические группы и их порождающие [любой нравящийся вам учебник по алгебре] Степашкина Виталия 04.10 9
5 Строение конечных полей [ЛН] Цейтин Андрей 04.10 7
6 Задача дискретного логарифмирования и основанные на ней криптосистемы: система Диффи-Хеллмана обмена ключами, системы Мэсси-Омура и Эль-Гамаля [K, Гл. IV, пар. 1, 3], [П, 1.3], [В,Гл. 5] Волотова Анастасия 04.10 10
7 Алгоритмы решения задачи дискретного логарифмирования [K, Гл. IV, пар. 3] Шатравка Даниил 18.10 10
8 Криптосистема RSA [K, Гл. IV, пар. 2], [П, 1.2] Вахитова Диана 18.10 9
9 Понятие электронной подписи. Электронная подпись в RSA и по Эль-Гамалю [K, Гл. IV, пар. 1, 3], [П, 1.3], [В,Гл. 5] Григорьева Василиса 08.11 10
10 Проверка чисел на простоту и задача факторизации. Решето Эратосфена. Псевдопростые числа и числа Кармайкла. Метод Поклингтона. (p-1)-метод Полларда [K, Гл. V], [П, 2.4], [В, Гл. 1-2] Мельников Игорь 08.11 10
11 Задача о рюкзаке как задача комбинаторной оптимизации. Быстрорастущие наборы. Рюкзачная криптосистема [K, Гл. IV, пар. 4] Мовшин Максим 29.11 8
12 Протоколы с нулевым разглашением. Три примера: раскраска карты в три цвета, поиск гамильтонова пути и извлечение корня в кольце вычетов [K, Гл. IV, пар. 5] Лаптева Анна 29.11 10
13 Математика разделенного секрета. Пороговые (n,k)-схемы доступа. Схема Шамира и схема Блэкли. [Я, Гл. 5] Новикова Юлия 29.11 9
доп История криптосистемы RSA Амирханов Никита 29.11 10
14 Разделение секрета и теория матроидов [Я, Гл. 5] Кислов Максим
15 Математика эллиптических кривых: групповой закон, формулы сложения и удвоения точек, теорема Хассе о числе точек на эллиптической кривой [K, Гл. VI, пар. 1], [П, гл. 4] Хворостяной Валерий 06.12 9
16 Нахождение точки на эллиптической кривой. Задача дискретного логарифмирования. Криптосистемы на эллиптических кривых: аналоги систем Диффи-Хеллмана и Эль-Гамаля [K, Гл. VI, пар. 2] Нечесов Андрей 06.12 10
17 Проверка чисел на простоту и разложение на множители при помощи эллиптических кривых. Аналог метода Поклингтона и метод Ленстры [K, Гл. VI, пар. 3-4], [В, Гл. 4] Сайфутдинов Рафаэль 06.12 10

Литература

[В] О.Н.Василенко. Теоретико-числовые алгоритмы в криптографии. М.: МЦНМО, 2003, 325 стр.

[К] Н.Коблиц. Курс теории чисел и криптографии. М.: ТВП, 2001, 254 стр.

[ЛН] Р.Лидл и Г.Нидеррайтер. Конечные поля. М.: Мир, 1988

[П] Ю.Г.Прохоров. Эллиптические кривые и криптография. Семестр 1. М.: МГУ, 2007. 143 стр.

[Я] Введение в криптографию. Под редакцией В.В.Ященко. М.: МЦНМО, 2012, 352 стр.

Оценивание

Итоговая оценка ИО по 10-балльной шкале формируется как взвешенная сумма, в зависимости от количества докладов.

Участие в семинаре без доклада:

  • контроль посещаемости научного семинара (КП, 10-балльная оценка);
  • решение домашних заданий (ДЗ, 10-балльная оценка);
  • устный экзамен в конце 3-го модуля в форме собеседования (УЭ, 10-балльная оценка);
  • ИО = 0,2 КП + 0,3 ДЗ + 0,5 УЭ

Участие в семинаре с докладом по одной из частей курса:

  • контроль посещаемости научного семинара (КП, 10-балльная оценка);
  • решение домашних заданий (ДЗ, 10-балльная оценка);
  • доклад с презентацией (ДП, 10-балльная оценка);
  • устный экзамен в конце 3-го модуля в форме собеседования той части курса, по которой доклада не было (УЭ, 10-балльная оценка);
  • ИО = 0,2 КП + 0,2 ДЗ + 0,3 ДП + 0.3 УЭ

Участие в семинаре с докладами по обеим частям курса:

  • контроль посещаемости научного семинара (КП, 10-балльная оценка);
  • решение домашних заданий (ДЗ, 10-балльная оценка);
  • доклад с презентацией по первой (ДП1, 10-балльная оценка) и по второй (ДП2, 10-балльная оценка) части курса;
  • ИО = 0,2 КП + 0,2 ДЗ + 0,3 ДП1 + 0.3 ДП2