Dopglavy DM 1920 — различия между версиями

Материал из Wiki - Факультет компьютерных наук
Перейти к: навигация, поиск
Строка 29: Строка 29:
 
|-  
 
|-  
 
|| 13.11.19 || Разбиение булевого куба на симметричные плотные цепи, приложение. Теорема Шпернера, LYM неравенство. ||  [https://www.dropbox.com/s/a75xfg3mpki942l/cw6_dop.pdf?dl=0 Листок 6]
 
|| 13.11.19 || Разбиение булевого куба на симметричные плотные цепи, приложение. Теорема Шпернера, LYM неравенство. ||  [https://www.dropbox.com/s/a75xfg3mpki942l/cw6_dop.pdf?dl=0 Листок 6]
<!---
 
 
|-  
 
|-  
|| 22.11.18 || Гамильтоновы графы. Теорема Бонди-Хватала. Теорема Хватала о степенных последовательностях. ||  [http://www.mi.ras.ru/~podolskii/files/extra_dm_1819/cw07_dop.pdf Листок 7]
+
|| 20.11.19 || Гамильтоновы графы. Теорема Бонди-Хватала. Теорема Хватала о степенных последовательностях. ||  [https://www.dropbox.com/s/8bybyiy52v2cly1/cw07_dop.pdf?dl=0 Листок 7]
 +
<!---
 
|-  
 
|-  
 
|| 29.11.18 || Разбор домашних заданий. ||   
 
|| 29.11.18 || Разбор домашних заданий. ||   

Версия 19:15, 20 ноября 2019

Общая информация

Правила выставления оценок

Занятие 16.10.19 не состоится!

Расписание

Первое занятие пройдет 18 сентября с 16:40 до 18:00 в ауд. R306.
Последующие занятия будут проходить по средам с 16:40 до 18:00 в ауд. D510.

Материалы курса

Дата Summary Домашнее задание
18.09.19 Числа Каталана. Рекурсивное определение и определение через баланс скобок, их эквивалентность. Рекуррентная формула для чисел Каталана. Выводы формулы для чисел Каталана: метод отражений. Листок 1
25.09.19 Логика высказываний, ее корректность. Лемма о дедукции. Листок 2
02.10.19 Замкнутые классы булевых функций. Теорема Поста. Листок 3
9.10.19 Лемма Шпернера. Теорема Брауэра. Листок 4
30.10.19 Вполне упорядоченные множества, их свойства. Начальные отрезки, их свойства. Теорема о рекурсии, формулировка. Листок 5
06.11.19 Теорема о рекурсии, доказательство. Из двух вполне упорядоченных множеств одно изоморфно начальному отрезку другого. Теорема Цермело. Тот же листок
13.11.19 Разбиение булевого куба на симметричные плотные цепи, приложение. Теорема Шпернера, LYM неравенство. Листок 6
20.11.19 Гамильтоновы графы. Теорема Бонди-Хватала. Теорема Хватала о степенных последовательностях. Листок 7

Источники

Числа Каталана: Черновик учебника по дискретной математике
Логика высказываний: Верещагин, А. Шень, Языки и исчисления.
Замкнутые классы булевых функций: Верещагин, А. Шень, Языки и исчисления.
Лемма Шпернера, теорема Брауэра: http://math.mit.edu/~fox/MAT307-lecture03.pdf
Вполне упорядоченные множества: Верещагин, А. Шень, Начала теории множеств.
Цепи и антицепи: Stasys Jukna, Extremal Combinatorics

Результаты

Таблица результатов