Алгебра ПИ 2024-2025 — различия между версиями
м (Изменение года) |
|||
(не показано 11 промежуточных версии этого же участника) | |||
Строка 12: | Строка 12: | ||
== Консультации == | == Консультации == | ||
+ | ; [https://docs.google.com/spreadsheets/d/12JA1z6adiApQtMIEh0dH8bZUgOqKenMfzfmg6qPoDfQ/edit?usp=sharing Расписание консультаций] | ||
Вы можете посещать как консультации, организованные для вашей группы, так и консультации других групп, если не удаётся посещать свои. | Вы можете посещать как консультации, организованные для вашей группы, так и консультации других групп, если не удаётся посещать свои. | ||
= Аттестация и оценки = | = Аттестация и оценки = | ||
== 2024/2025 учебный год 2 модуль == | == 2024/2025 учебный год 2 модуль == | ||
− | '''''' | + | '''О1 = 0,22∙О_(Кр-1) + 0,14∙О_(ИДЗ-1 и ИДЗ-2) + 0,14∙О_(Сем-1) + 0,5∙О_(Экз-1)''' |
− | == | + | == 2024/2025 учебный год 4 модуль == |
− | '''''' | + | '''О2 = 0,21∙О_(Кр-3) + 0,08∙О_(ИДЗ-3 и ИДЗ-4) + 0,1∙О_(Сем-2) + 0,21∙О_(Коллок-1 и Коллок-2) + 0,5∙О_(Экз-2)''' |
+ | |||
+ | Оценки за индивидуальные домашние задания в 1 и 2 модулях, а также в 3 и 4 модулях вычисляются как среднее арифметическое О_(ИДЗ-1(3)) и О_(ИДЗ-2(4)). Оценка за коллоквиумы в 3 и 4 модулях вычисляется как среднее арифметическое О_(Коллок-3) и О_(Коллок-4). | ||
= Прошедшие лекции = | = Прошедшие лекции = | ||
+ | Лекция 1 (04.09.2024): | ||
+ | Матрицы. Частные случаи матриц. Единичная матрица. Операции над матрицами: сложение, умножение на число, умножение. Примеры. Свойства операций над матрицами: сложения и умножения на скаляр, умножения. Доказательство ассоциативности умножения матриц. | ||
+ | |||
+ | Лекция 2 (11.09.2024): | ||
+ | Транспонирование и его свойства. Доказательство связи умножения и транспонирования. | ||
+ | Элементарные преобразования строк матрицы. Ступенчатый вид матрицы и канонический (улучшенный ступенчатый) вид матрицы. Теорема о методе Гаусса с доказательством. Системы линейных алгебраических уравнений и их связь с методом Гаусса. | ||
+ | |||
+ | Лекция 3 (18.09.2023): | ||
+ | Системы линейных алгебраических уравнений и их связь с методом Гаусса. | ||
+ | Перестановки и подстановки. Инверсии. Транспозиции. Знак и чётность перестановки и подстановки. Утверждение о том, что транспозиция меняет чётность перестановки. Циклическая запись. Умножение подстановок. Тождественная подстановка. Обратная подстановка. | ||
+ | Общая формула для определителя произвольного порядка. Вычисление определителя матрицы порядков 2 и 3, правило Саррюса. | ||
+ | |||
+ | Лекция 4 (25.09.2024): | ||
+ | Свойства определителя: 1. Определитель транспонированной матрицы. 2. Полилинейность. 3. Кососимметричность. 4. Достаточные условия обнуления: нулевая строка и совпадение строк. 5. Определитель равен нулю, если строка равна линейной комбинации остальных. 6. Определитель не меняется, если к строке добавить линейную комбинацию других. 7. Значение определителя на единичной и диагональной матрице. 8. Определитель верхнетреугольной матрицы. | ||
+ | Замечание о том, как меняется определитель при элементарных преобразованиях строк/столбцов. 1й способ вычисления определителя приведением методом Гаусса матрицы к верхнетреугольному виду. | ||
+ | |||
+ | Лекция 5 (02.10.2024): | ||
+ | Утверждение об эквивалентности кососимметричности и обнуления на совпадающих аргументах для линейной функции. | ||
+ | Утверждение о том, что любая полилинейная кососимметрическая функция является определителем, с точностью до множителя (доказательство для n=2). Второе определение детерминанта как полилинейной кососимметрической функции от столбцов, равной 1 на единичной матрице. | ||
+ | Свойства определителя: | ||
+ | 9. Разложение по строке. Дополняющий минор, алгебраическое дополнение. 10. Фальшивое разложение. Третье (рекуррентное) определение детерминанта через разложение по строке. | ||
+ | 11. Определитель блочной матрицы. 12. Определитель произведения с доказательством. | ||
+ | |||
+ | Лекция 6 (09.10.2024): | ||
+ | Вычисление определителей с помощью элементарных преобразований и рекуррентных соотношений. | ||
+ | Доказательство правила Крамера. Определение обратной матрицы. Её единственность. Теорема о критерии существования обратной матрицы с доказательством. Союзная матрица. Формула для вычисления обратной матрицы. | ||
+ | Матрица, обратная к произведению матриц, и матрица, обратная к транспонированной матрице. Вычисление обратной матрицы с помощью элементарных преобразований и по формуле. Матричные уравнения двух типов двумя способами. | ||
+ | Минор. Ранг матрицы. | ||
+ | |||
+ | Лекция 7 (16.10.2024): | ||
+ | Ранг матрицы. Базисный минор. Примеры. Два свойства ранга матрицы: ранг транспонированной матрицы (с доказательством) и поведение ранга при элементарных преобразованиях. | ||
+ | Определение линейной комбинации строк. Линейная зависимость строк (столбцов). Линейно независимые строки. Примеры. | ||
+ | Критерий линейной зависимости с доказательством. Теорема о базисном миноре с доказательством. | ||
+ | |||
+ | Лекция 8 (23.10.2024): | ||
+ | Следствия теоремы о базисном миноре: теорема о ранге матрицы с доказательством (эквивалентное определение ранга), критерий невырожденности квадратной матрицы с доказательством. | ||
+ | Вычисление ранга матрицы (элементарные преобразования и метод окаймляющих миноров). Теорема об окаймляющих минорах с доказательством. Пример. | ||
+ | ; [https://us06web.zoom.us/rec/share/bQZWXG-XtQ0EUExDcp0wEHWIMRUs8oqp8_WPbF5ThHtJVuZ4GoMvkj0qFWg21pYU.kZV9TyFznNmpn7eI?startTime=1729676727000 Запись лекции] | ||
+ | ; [https://miro.com/welcomeonboard/MjNNQThBdzZKeG94aEx6ZVllSnJTSm1iUHNQcVJuaWIwWHFEMzZDM1NrSEZQQXNEeXdpU1gyZ0xYVW0zRUdWMXwzNDU4NzY0NTgzODA4Mzg2MzEzfDI=?share_link_id=725681947400 Конспект лекции] | ||
+ | |||
+ | Лекция 9 (06.11.2024). | ||
+ | СЛАУ, свойства решений СЛАУ. Следствие о том, каким может быть множество решений СЛАУ (несовместная, определённая и неопределённая СЛАУ). | ||
+ | Теорема Кронекера-Капелли с доказательством. Пример. | ||
+ | Однородные СЛАУ, ФСР. Теорема о существовании ФСР (формулировка). Пример. | ||
= Литература = | = Литература = | ||
Строка 29: | Строка 76: | ||
* А.И. Кострикин. Введение в алгебру. Часть I. Основы алгебры. М.: Физматлит, 1994 | * А.И. Кострикин. Введение в алгебру. Часть I. Основы алгебры. М.: Физматлит, 1994 | ||
* А.И. Кострикин. Введение в алгебру. Часть II. Линейная алгебра. М.: Физматлит, 2000 | * А.И. Кострикин. Введение в алгебру. Часть II. Линейная алгебра. М.: Физматлит, 2000 | ||
+ | * А.И. Кострикин. Введение в алгебру. Часть III | ||
+ | * В.А. Ильин, Г.Д. Ким. Линейная алгебра и аналитическая геометрия. 3-е издание | ||
== Сборники задач == | == Сборники задач == | ||
Строка 35: | Строка 84: | ||
* Сборник задач по алгебре под редакцией А.Н. Кострикина. Новое издание. М.: МЦНМО, 2009 | * Сборник задач по алгебре под редакцией А.Н. Кострикина. Новое издание. М.: МЦНМО, 2009 | ||
* Г.Д. Ким, Л.В. Крицков. Алгебра и аналитическая геометрия. Теоремы и задачи. Том I. М.: "Планета знаний", 2007 | * Г.Д. Ким, Л.В. Крицков. Алгебра и аналитическая геометрия. Теоремы и задачи. Том I. М.: "Планета знаний", 2007 | ||
+ | * Г.Д. Ким, Л.В. Крицков. Алгебра и аналитическая геометрия. Теоремы и задачи. Том II, часть 2. М.: ИКД "Зерцало-М", 2003 |
Текущая версия на 17:02, 8 ноября 2024
Содержание
Преподаватели и учебные ассистенты
Группа | БПИ 241 | БПИ 242 | БПИ 243 | БПИ 244 | БПИ 245 | БПИ 246 | БПИ 247 | БПИ 248 | БПИ 249 | БПИ 2410 |
---|---|---|---|---|---|---|---|---|---|---|
Лектор | Михайлец Екатерина Викторовна | |||||||||
Семинаристы | Михайлец Екатерина Викторовна | Зайцева Юлия Ивановна | Хрыстик Михаил Андреевич | Шипицына Алина Денисовна | Зайцева Юлия Ивановна | Медведь Никита Юрьевич | Зароднюк Алёна Владимировна | Максаев Артём Максимович | Шахматов Кирилл Вениаминович | Бельдиев Иван Сергеевич |
Ассистенты | Рогачков Антон, Сергеев Дмитрий | Носов Андрей, Кошкин Георгий | Амиров Агиль, Сокуров Идар | Гетманова Карина, Кухтина Юлия, Михайлов Владислав | Пичугин Владислав, Мягкова Анна | Асташкина Анна, Шварева Анна | Максимов Тимофей, Кичигин Артём | Молонов Борис, Гювенч Эмрэ | Владимиров Алексей, Лейбович Алёна | Агаркова Полина, Пасынков Матвей |
Консультации
Вы можете посещать как консультации, организованные для вашей группы, так и консультации других групп, если не удаётся посещать свои.
Аттестация и оценки
2024/2025 учебный год 2 модуль
О1 = 0,22∙О_(Кр-1) + 0,14∙О_(ИДЗ-1 и ИДЗ-2) + 0,14∙О_(Сем-1) + 0,5∙О_(Экз-1)
2024/2025 учебный год 4 модуль
О2 = 0,21∙О_(Кр-3) + 0,08∙О_(ИДЗ-3 и ИДЗ-4) + 0,1∙О_(Сем-2) + 0,21∙О_(Коллок-1 и Коллок-2) + 0,5∙О_(Экз-2)
Оценки за индивидуальные домашние задания в 1 и 2 модулях, а также в 3 и 4 модулях вычисляются как среднее арифметическое О_(ИДЗ-1(3)) и О_(ИДЗ-2(4)). Оценка за коллоквиумы в 3 и 4 модулях вычисляется как среднее арифметическое О_(Коллок-3) и О_(Коллок-4).
Прошедшие лекции
Лекция 1 (04.09.2024): Матрицы. Частные случаи матриц. Единичная матрица. Операции над матрицами: сложение, умножение на число, умножение. Примеры. Свойства операций над матрицами: сложения и умножения на скаляр, умножения. Доказательство ассоциативности умножения матриц.
Лекция 2 (11.09.2024): Транспонирование и его свойства. Доказательство связи умножения и транспонирования. Элементарные преобразования строк матрицы. Ступенчатый вид матрицы и канонический (улучшенный ступенчатый) вид матрицы. Теорема о методе Гаусса с доказательством. Системы линейных алгебраических уравнений и их связь с методом Гаусса.
Лекция 3 (18.09.2023): Системы линейных алгебраических уравнений и их связь с методом Гаусса. Перестановки и подстановки. Инверсии. Транспозиции. Знак и чётность перестановки и подстановки. Утверждение о том, что транспозиция меняет чётность перестановки. Циклическая запись. Умножение подстановок. Тождественная подстановка. Обратная подстановка. Общая формула для определителя произвольного порядка. Вычисление определителя матрицы порядков 2 и 3, правило Саррюса.
Лекция 4 (25.09.2024): Свойства определителя: 1. Определитель транспонированной матрицы. 2. Полилинейность. 3. Кососимметричность. 4. Достаточные условия обнуления: нулевая строка и совпадение строк. 5. Определитель равен нулю, если строка равна линейной комбинации остальных. 6. Определитель не меняется, если к строке добавить линейную комбинацию других. 7. Значение определителя на единичной и диагональной матрице. 8. Определитель верхнетреугольной матрицы. Замечание о том, как меняется определитель при элементарных преобразованиях строк/столбцов. 1й способ вычисления определителя приведением методом Гаусса матрицы к верхнетреугольному виду.
Лекция 5 (02.10.2024): Утверждение об эквивалентности кососимметричности и обнуления на совпадающих аргументах для линейной функции. Утверждение о том, что любая полилинейная кососимметрическая функция является определителем, с точностью до множителя (доказательство для n=2). Второе определение детерминанта как полилинейной кососимметрической функции от столбцов, равной 1 на единичной матрице. Свойства определителя: 9. Разложение по строке. Дополняющий минор, алгебраическое дополнение. 10. Фальшивое разложение. Третье (рекуррентное) определение детерминанта через разложение по строке. 11. Определитель блочной матрицы. 12. Определитель произведения с доказательством.
Лекция 6 (09.10.2024): Вычисление определителей с помощью элементарных преобразований и рекуррентных соотношений. Доказательство правила Крамера. Определение обратной матрицы. Её единственность. Теорема о критерии существования обратной матрицы с доказательством. Союзная матрица. Формула для вычисления обратной матрицы. Матрица, обратная к произведению матриц, и матрица, обратная к транспонированной матрице. Вычисление обратной матрицы с помощью элементарных преобразований и по формуле. Матричные уравнения двух типов двумя способами. Минор. Ранг матрицы.
Лекция 7 (16.10.2024): Ранг матрицы. Базисный минор. Примеры. Два свойства ранга матрицы: ранг транспонированной матрицы (с доказательством) и поведение ранга при элементарных преобразованиях. Определение линейной комбинации строк. Линейная зависимость строк (столбцов). Линейно независимые строки. Примеры. Критерий линейной зависимости с доказательством. Теорема о базисном миноре с доказательством.
Лекция 8 (23.10.2024): Следствия теоремы о базисном миноре: теорема о ранге матрицы с доказательством (эквивалентное определение ранга), критерий невырожденности квадратной матрицы с доказательством. Вычисление ранга матрицы (элементарные преобразования и метод окаймляющих миноров). Теорема об окаймляющих минорах с доказательством. Пример.
Лекция 9 (06.11.2024). СЛАУ, свойства решений СЛАУ. Следствие о том, каким может быть множество решений СЛАУ (несовместная, определённая и неопределённая СЛАУ). Теорема Кронекера-Капелли с доказательством. Пример. Однородные СЛАУ, ФСР. Теорема о существовании ФСР (формулировка). Пример.
Литература
Учебники
- А.И. Кострикин. Введение в алгебру. Часть I. Основы алгебры. М.: Физматлит, 1994
- А.И. Кострикин. Введение в алгебру. Часть II. Линейная алгебра. М.: Физматлит, 2000
- А.И. Кострикин. Введение в алгебру. Часть III
- В.А. Ильин, Г.Д. Ким. Линейная алгебра и аналитическая геометрия. 3-е издание
Сборники задач
- И.В. Проскуряков. Сборник задач по линейной алгебре (любое издание, например М.: БИНОМ, 2005)
- Сборник задач по алгебре под редакцией А.Н. Кострикина. Новое издание. М.: МЦНМО, 2009
- Г.Д. Ким, Л.В. Крицков. Алгебра и аналитическая геометрия. Теоремы и задачи. Том I. М.: "Планета знаний", 2007
- Г.Д. Ким, Л.В. Крицков. Алгебра и аналитическая геометрия. Теоремы и задачи. Том II, часть 2. М.: ИКД "Зерцало-М", 2003