Математический анализ - 2 (основной поток) — различия между версиями

Материал из Wiki - Факультет компьютерных наук
Перейти к: навигация, поиск
(Модуль 1)
(Экзамен 2)
 
(не показано 239 промежуточных версии 4 участников)
Строка 3: Строка 3:
 
{| class="wikitable" style="text-align:center"
 
{| class="wikitable" style="text-align:center"
 
|-
 
|-
! Группа !! 193 !! 195 !! 196 !! 197 !! 198 !! 199 !! 1910
+
! Группа !! 193 !! 195 !! 196 !! 197 !! 198 !! 199 !! 1910 !! 1911
 
|-
 
|-
|| Лектор ||colspan="7"| [https://www.hse.ru/org/persons/307981475 Маевский Е.В.]
+
|| Лектор ||colspan="8"| [https://www.hse.ru/org/persons/307981475 Маевский Е.В.]
 
|-  
 
|-  
|| Семинарист || [https://www.hse.ru/org/persons/309076802 Колесниче́нко Е.Ю.] || [https://www.hse.ru/org/persons/224876101 Днестрян А.И.] || [https://www.hse.ru/org/persons/307981475 Маевский Е.В.] || [https://www.hse.ru/org/persons/307981475 Маевский Е.В.] || [https://www.hse.ru/org/persons/307981475 Маевский Е.В.] || [https://www.hse.ru/org/persons/309076802 Колесниче́нко Е.Ю.] || Томашевский С.В.
+
|| Семинарист || [https://www.hse.ru/org/persons/309076802 Колесниче́нко Е.Ю.] || [https://www.hse.ru/org/persons/224876101 Днестрян А.И.] || [https://www.hse.ru/org/persons/307981475 Маевский Е.В.] || [https://www.hse.ru/org/persons/307981475 Маевский Е.В.] || [https://www.hse.ru/org/persons/307981475 Маевский Е.В.] || [https://www.hse.ru/org/persons/309076802 Колесниче́нко Е.Ю.] || Томашевский С.В. || Томашевский С.В.
 
|-
 
|-
|| Ассистент || Вологодский Михаил || Субхангулов Султан || Лямзин Алексей || Паузнер Илья || Сухарьков Александр || Семерова Елена || Цыганов Артем  
+
|| Ассистент || Вологодский Михаил || Субхангулов Султан || Лямзин Алексей || Паузнер Илья || Сухарьков Александр || Семерова Елена || Цыганов Артем || Сухарьков Александр
 
|}
 
|}
  
Строка 18: Строка 18:
 
! Преподаватель !! понедельник !! вторник !! среда !! четверг !! пятница
 
! Преподаватель !! понедельник !! вторник !! среда !! четверг !! пятница
 
|-
 
|-
| Маевский Е.В. ||  ||  || || ||
+
| Маевский Евгений Валерьевич ||colspan="5"| почта: emaevskiy@mail.ru или телеграм: @emaevskiy
 
|-
 
|-
| Колесниче́нко Е.Ю. ||  ||  ||  ||  ||
+
| Колесниче́нко Елена Юрьевна ||  ||  ||  ||  ||
 
|-
 
|-
| Днестрян А.И. ||  ||  ||  ||  ||
+
| Днестрян Андрей Игоревич ||  ||  ||  ||  ||
 
|-
 
|-
| Томашевский С.В. || ||  ||  || ||  
+
| Томашевский Сергей Владимирович || ||  ||  || ||  
 
|}
 
|}
  
 
== О курсе ==
 
== О курсе ==
Эта страничка содержит ссылки на материалы по курсу Математического анализа - 2 в 2020/2021 учебном году на основном потоке образовательной программы "Прикладная Математика и Информатика" Факультета Компьютерных Наук НИУ ВШЭ.
 
  
== Лекции ==
+
Данный курс '''Математический анализ - 2''' читается в 2020/2021 учебном году на основном потоке образовательной программы "Прикладная Математика и Информатика" Факультета компьютерных наук НИУ ВШЭ.
Ссылка вида [Ф123] - это ссылка на пункт (в данном случае - 123) в учебнике Фихтенгольца издания 1969г. Нумерация пунктов в этом учебнике сплошная.
+
 
 +
Курс состоит из следующих разделов: числовые и функциональные ряды, кратные интегралы, интегралы с параметром, ряды и преобразование Фурье, криволинейные и поверхностные интегралы, элементы комплексного анализа. Рассчитан на 2 семестра (4 модуля).
 +
 
 +
== Лекции и коллоквиумы ==
 +
 
 +
=== О коллоквиумах ===
 +
 
 +
Описанный ниже формат коллоквиума действует начиная с 3-го модуля. Информация о формате коллоквиумов 1-го и 2-го модулей удалена, т.к. перестала быть актуальной.
 +
 
 +
Коллоквиум у нас - это письменный зачет по теории. Проводится на последнем семинаре модуля. Состоит из 3 теоретических заданий на 80 минут. Теоретические задания включают в себя вопросы на формулировку определений, утверждений и доказательства. Каждое задание оценивается по системе 0-1-2-3-4 без дробных баллов. Затем баллы суммируются и сумма умножается на 5/6.
 +
 
 +
=== О лекциях ===
 +
 
 +
Размещенные по ссылкам в оглавлении лекций дополнительные материалы (обычно содержащие полные доказательства и дополнительные примеры)  необязательны для изучения, но могут быть небезынтересны для отдельных интересующихся студентов.
 +
 
 +
['''Ф'''123] - это ссылка на пункт (в данном случае - 123) в учебнике Фихтенгольца издания 1969г. Нумерация пунктов в этом учебнике сплошная.
 +
 
 +
['''З'''11.6] - это ссылка на главу 11, параграф 6 в учебнике Зорича. Нумерация глав - сплошная.
  
 
=== Модуль 1 ===
 
=== Модуль 1 ===
  
 
<div class="mw-collapsible mw-collapsed">
 
<div class="mw-collapsible mw-collapsed">
''' Лекция 1.1 ''' (01.09.20)
+
''' Лекция 1.1 ''' (01.09.20) [https://www.youtube.com/watch?v=TJtwtDujgp0&list=PLEwK9wdS5g0qV-430pfXzTawd6pI_VUgq Видео]
 
<div class="mw-collapsible-content" style="display: none;">
 
<div class="mw-collapsible-content" style="display: none;">
'''I. Ряды'''
+
'''I. Числовые и функциональные ряды'''
  
 
:1. Введение
 
:1. Введение
  
::1.1 Основные понятия [Ф362]
+
::1.1 Основные понятия ['''Ф'''362]
  
::1.2 Необходимое условие сходимости ряда [Ф364]
+
::1.2 Необходимое условие сходимости ряда ['''Ф'''364]
  
::1.3 Критерий Коши сходимости ряда [Ф376]
+
::1.3 Критерий Коши сходимости ряда ['''Ф'''376]
  
 
::1.4 Примеры
 
::1.4 Примеры
Строка 52: Строка 68:
 
:2. Положительные ряды
 
:2. Положительные ряды
  
::2.1 Введение [Ф365]
+
::2.1 Введение ['''Ф'''365]
  
::2.2 Признаки сравнения [Ф366]
+
::2.2 Признаки сравнения ['''Ф'''366]
  
::2.3 Отсутствие универсального ряда сравнения [Ф375]
+
::2.3 Отсутствие универсального ряда сравнения ['''Ф'''375]
 
</div></div>
 
</div></div>
  
 
<div class="mw-collapsible mw-collapsed">
 
<div class="mw-collapsible mw-collapsed">
''' Лекция 1.2 ''' (08.09.20)
+
''' Лекция 1.2 ''' (08.09.20) [https://www.youtube.com/watch?v=z1mie_jpCs0&list=PLEwK9wdS5g0qV-430pfXzTawd6pI_VUgq&index=4 Видео]
 
<div class="mw-collapsible-content" style="display: none;">
 
<div class="mw-collapsible-content" style="display: none;">
::2.4 [https://drive.google.com/file/d/169ArFgyTHlV-GG4cp8kFD3XsP1JkfLMn/view?usp=sharing Признак Лобачевского - Коши] [Ф375]
+
::2.4 [https://drive.google.com/file/d/169ArFgyTHlV-GG4cp8kFD3XsP1JkfLMn/view?usp=sharing Признак Лобачевского - Коши] ['''Ф'''375]
  
 
::2.5 [https://drive.google.com/file/d/1AwYuZXWftrl3qnnpZ62_E8V45H0Ya8ZZ/view?usp=sharing Оценка частичных сумм гармонического ряда]  
 
::2.5 [https://drive.google.com/file/d/1AwYuZXWftrl3qnnpZ62_E8V45H0Ya8ZZ/view?usp=sharing Оценка частичных сумм гармонического ряда]  
  
::2.6 [https://drive.google.com/file/d/1EJ0KG0hnRVSSM2A53sfZ8acV_kH2Owwq/view?usp=sharing Признак Даламбера и радикальный признак Коши] [Ф368]  
+
::2.6 [https://drive.google.com/file/d/1EJ0KG0hnRVSSM2A53sfZ8acV_kH2Owwq/view?usp=sharing Признак Даламбера и радикальный признак Коши] ['''Ф'''368]  
  
 
::2.7 [https://drive.google.com/file/d/1M0bP14-5Jx5bsQx6YjOFgzoXGzWpvXqS/view?usp=sharing Радикальный признак Коши сильнее признака Даламбера]
 
::2.7 [https://drive.google.com/file/d/1M0bP14-5Jx5bsQx6YjOFgzoXGzWpvXqS/view?usp=sharing Радикальный признак Коши сильнее признака Даламбера]
  
::2.8 [https://drive.google.com/file/d/1RAQ5iVXOTKoc9kLZu1GPv6w_HxzpYVMQ/view?usp=sharing Признак Гаусса] [Ф372]  
+
::2.8 [https://drive.google.com/file/d/1RAQ5iVXOTKoc9kLZu1GPv6w_HxzpYVMQ/view?usp=sharing Признак Гаусса] ['''Ф'''372]  
  
::2.9 [https://drive.google.com/file/d/1Nnjn5ao-A1SGSIx0yiHWefvANUg5aS-r/view?usp=sharing Сравнение с интегралом] [Ф373]  
+
::2.9 [https://drive.google.com/file/d/1Nnjn5ao-A1SGSIx0yiHWefvANUg5aS-r/view?usp=sharing Сравнение с интегралом] ['''Ф'''373]  
  
::2.10 [https://drive.google.com/file/d/1oGptUbdctZop4fEZZwRSuGdcMQF6tZ-X/view?usp=sharing Улучшение сходимости ряда]
+
::2.10 [https://drive.google.com/file/d/1oGptUbdctZop4fEZZwRSuGdcMQF6tZ-X/view?usp=sharing Улучшение сходимости ряда] ['''Ф'''415]
 +
 
 +
Дополнение. [https://drive.google.com/file/d/1Be9LdnGZiiXOwgEX7F6GQM1pbwwUmgxs/view?usp=sharing Теорема Штольца] ['''Ф'''33]
 
</div></div>
 
</div></div>
  
 
<div class="mw-collapsible mw-collapsed">
 
<div class="mw-collapsible mw-collapsed">
''' Лекция 1.3 ''' (17.09.20)
+
''' Лекция 1.3 ''' (15.09.20) [https://www.youtube.com/watch?v=evBVMPMb1EI&list=PLEwK9wdS5g0qV-430pfXzTawd6pI_VUgq&index=6 Видео]
 
<div class="mw-collapsible-content" style="display: none;">
 
<div class="mw-collapsible-content" style="display: none;">
 
:3. Знакопеременные ряды
 
:3. Знакопеременные ряды
  
::3.1 Введение (абсолютная и условная сходимость)
+
Внимание! В учебнике Фихтенгольца другая (устаревшая) терминология (знакопеременным рядом там называется то, что теперь принято называть знакочередующимся).
  
::3.2 Мажорантный признак Вейерштрасса
+
::3.1 [https://drive.google.com/file/d/1jZdESl6-JO5Lyk2d8mE7pLeBVjXxy8T8/view?usp=sharing Абсолютная и условная сходимость. Положительная и отрицательная части ряда]
  
::3.3 Знакочередующиеся ряды - признак Лейбница
+
::3.2 [https://drive.google.com/file/d/1thK_PUTn2Hq3YE-BZoD9xH1aJNN-aPVe/view?usp=sharing Мажорантный признак Вейерштрасса]
  
::3.4 Неприменимость признака сравнения
+
::3.3 [https://drive.google.com/file/d/197mDZwIHo8MhQDdb1reABV0fLZ1JxBCp/view?usp=sharing Группировка членов ряда. Приведение знакопеременного ряда к знакочередующемуся]
  
::3.5 Влияние перестановки членов на сумму ряда
+
::3.4 [https://drive.google.com/file/d/1XWgtLeQqPiUf2gsoNYeE3FENC0U5tMHe/view?usp=sharing Знакочередующиеся ряды. Признак Лейбница]
  
::3.6 Формула суммирования по частям
+
::3.5 [https://drive.google.com/file/d/1tKvPIntTaorqbh4yVblWeX6JVobjgiIt/view?usp=sharing О неприменимости эквивалентности и применении асимптотики общего члена]
  
::3.7 Признаки Абеля и Дирихле
+
::3.6 [https://drive.google.com/file/d/1mcsQp-w7HHTRQ_n1cIxjjBcOmDmDJHef/view?usp=sharing Формула суммирования по частям. Признаки Абеля и Дирихле]
 +
 
 +
::3.7 [https://drive.google.com/file/d/1jarUMiagtmZU-rSe-kKCBFfj-X3CsdWN/view?usp=sharing Влияние перестановки членов на сумму ряда]
 
</div></div>
 
</div></div>
  
 
<div class="mw-collapsible mw-collapsed">
 
<div class="mw-collapsible mw-collapsed">
''' Коллоквиум 1 '''  
+
''' Лекция 1.4 ''' (22.09.20) [https://www.youtube.com/watch?v=GQe6PvZe3RY&list=PLEwK9wdS5g0qV-430pfXzTawd6pI_VUgq&index=7 Видео]
 
<div class="mw-collapsible-content" style="display: none;">
 
<div class="mw-collapsible-content" style="display: none;">
 +
::3.8 [https://drive.google.com/file/d/1enMGhxlOvaNpvcVUPdrxRrAwHOHL2UjV/view?usp=sharing Умножение рядов]
 +
 +
:4. Бесконечные произведения
 +
 +
::4.1 Основные понятия
 +
 +
::4.2 Сходимость бесконечного произведения
 +
 +
::4.3 Абсолютная сходимость бесконечного произведения
 +
 +
::4.4 Примеры (произведение Валлиса и тождество Эйлера для &zeta;-функции Римана)
 +
 +
:5. Функциональные последовательности
 +
 +
::5.1 Поточечная и равномерная сходимость
 +
 +
::5.2 Равномерная норма. Критерий Коши равномерной сходимости
 +
 +
::5.3 Сходимость последовательности непрерывных функций. Теорема Дини о монотонной сходимости
 +
 +
Внимание! На лекции допущена ошибка в формулировке теоремы Дини: опущено условие непрерывности предельной функции.
 +
Читайте мой комментарий к лекции на ютубе.
 +
 +
::5.4 Неравномерная сходимость: локализация особенности
 
</div></div>
 
</div></div>
 +
 +
<div class="mw-collapsible mw-collapsed">
 +
''' Лекция 1.5 ''' (29.09.20) [https://www.youtube.com/watch?v=Ky_kONQxBLQ&list=PLEwK9wdS5g0qV-430pfXzTawd6pI_VUgq&index=9 Видео]
 +
<div class="mw-collapsible-content" style="display: none;">
 +
::5.5 Свойства равномерно сходящейся последовательности
 +
 +
:6. Равномерная сходимость функционального ряда
 +
 +
::6.1 Основные понятия
 +
 +
::6.2 Необходимое условие равномерной сходимости
 +
 +
::6.3 Критерий Коши равномерной сходимости
 +
 +
::6.4 Признаки Вейерштрасса и Даламбера
 +
 +
::6.5 Признак Лейбница
 +
 +
::6.6 Признаки Дирихле и Абеля
 +
 +
::6.7 Свойства равномерно сходящегося ряда
 +
</div></div>
 +
 +
<div class="mw-collapsible mw-collapsed">
 +
''' Лекция 1.6 ''' (06.10.20) [https://www.youtube.com/watch?v=veyGe7fKKsg&list=PLEwK9wdS5g0qV-430pfXzTawd6pI_VUgq&index=17 Видео]
 +
<div class="mw-collapsible-content" style="display: none;">
 +
:7. Степенные ряды
 +
 +
::7.1 Основные понятия
 +
 +
::7.2 Теорема Абеля о сходимости степенного ряда. Радиус сходимости. Интервал сходимости
 +
 +
::7.3 Сходимость степенного ряда в граничной точке интервала сходимости
 +
 +
::7.4 Дифференцирование и интегрирование степенного ряда
 +
 +
::7.5 Ряд Тейлора. Оценки для остатка ряда
 +
 +
::7.6 Ряды Тейлора основных элементарных функций
 +
</div></div>
 +
 +
<div class="mw-collapsible mw-collapsed">
 +
''' Лекция 1.7 ''' (13.10.20) [https://www.youtube.com/watch?v=8M1MtC6V4Iw&list=PLEwK9wdS5g0qV-430pfXzTawd6pI_VUgq&index=19 Видео]
 +
<div class="mw-collapsible-content" style="display: none;">
 +
::7.7 Треугольник Бернулли - Эйлера и разложения tg и sec
 +
 +
::7.8 Радиус сходимости и экспоненциальное убывание коэффициента
 +
 +
:8 Степенной ряд от комплексной переменной
 +
 +
::8.1 Признак Абеля и теорема Абеля. Радиус сходимости. Круг сходимости
 +
 +
::8.2 Аналитическая функция. Особые точки
 +
 +
::8.3 Основные элементарные функции комплексной переменной
 +
 +
::8.4 Формула Эйлера для комплексной экспоненты
 +
 +
:9. Операции над степенными рядами
 +
 +
::9.1 Умножение степенных рядов
 +
 +
::9.2 Деление степенных рядов
 +
 +
::9.3 Мультиномиальная формула и перестановки с повторениями
 +
 +
::9.4 Подстановка степенного ряда в степенной ряд
 +
 +
::9.5 Обращение степенного ряда. Формула Лагранжа
 +
</div></div>
 +
 +
<div class="mw-collapsible mw-collapsed">
 +
''' Десерт '''
 +
<div class="mw-collapsible-content" style="display: none;">
 +
:10. Эйлеровы разложения тригонометрических функций
 +
 +
::10.1 Разложение sin в бесконечное произведение
 +
 +
::10.2 Разложение cos в бесконечное произведение
 +
 +
::10.3 Значения &zeta;-функции от положительного четного аргумента
 +
 +
::10.4 Разложения tg и ctg на простейшие дроби
 +
</div></div>
 +
 +
=== Коллоквиум 1 ===
 +
 +
[https://drive.google.com/file/d/1sr8XmNOzeL8uPXSG12FlmgukfJxNsA8r/view?usp=sharing Вопросы]
 +
 +
Коллоквиум состоится 17 октября (суббота) в 16:20 (Московское время). Материал лекции 13.10 в него не войдет.
 +
Коллоквиум пройдет в дистанционном формате для всех групп. Дополнительные инструкции смотрите на почте.
  
 
=== Модуль 2 ===
 
=== Модуль 2 ===
  
== Семинары и домашние задания ==
+
<div class="mw-collapsible mw-collapsed">
 +
''' Лекция 2.1 ''' (27.10.20) [https://www.youtube.com/watch?v=d38soz5sZbs&list=PLEwK9wdS5g0qV-430pfXzTawd6pI_VUgq&index=27 Видео]
 +
<div class="mw-collapsible-content" style="display: none;">
 +
'''II. Кратные интегралы'''
  
К каждому семинару выдается список задач. Некоторые задачи из него рассматриваются на семинаре, остальное - ДЗ.   
+
:1. [https://drive.google.com/file/d/1vv_Blwximv805jysRZ1wJYdELTLi_xFy/view?usp=sharing Мера Жордана]
 +
 
 +
::1.1 Мера на кольце подмножеств
 +
 
 +
::1.2 Ограниченные полуинтервалы в R<sup>m</sup>
 +
 
 +
::1.3 Кольцо простых множеств в R<sup>m</sup> и мера на нем
 +
 
 +
::1.4 Внешняя m-мерная мера Жордана и ее свойства
 +
 
 +
::1.5 Кольцо множеств в R<sup>m</sup>, измеримых по Жордану. Внутренняя мера Жордана
 +
 
 +
::1.6 Интегрируемость функции по Риману и измеримость по Жордану ее подграфика
 +
</div></div>
 +
<div class="mw-collapsible mw-collapsed">
 +
''' Лекция 2.2 ''' (03.11.20) [https://www.youtube.com/watch?v=axzZhFLCYrw&list=PLEwK9wdS5g0qV-430pfXzTawd6pI_VUgq&index=34 Видео]
 +
<div class="mw-collapsible-content" style="display: none;">
 +
:2. [https://drive.google.com/file/d/1aaW5SMPXnJ7rA89cpMxekNuuuz1lcI9X/view?usp=sharing Кратный интеграл Римана]
 +
 
 +
::2.1 Область интегрирования и ее разбиение
 +
 
 +
::2.2 Произведение разбиений. Измельчение разбиения. Диаметр разбиения
 +
 
 +
::2.3 Интегральная сумма. Интегрируемость функции
 +
 
 +
::2.4 Критерий Коши интегрируемости функции
 +
 
 +
::2.5 Интегрируемость и ограниченность
 +
 
 +
::2.6 Нижняя и верхняя суммы Дарбу. Их свойства
 +
 
 +
::2.7 Критерий Дарбу интегрируемости функции
 +
 
 +
::2.8 Интегрируемость равномерно непрерывной функции
 +
 
 +
::2.9 Критерий Дюбуа-Реймона
 +
 
 +
::2.10 Критерий Лебега
 +
</div></div>
 +
<div class="mw-collapsible mw-collapsed">
 +
''' Лекция 2.3 ''' (10.11.20) [https://www.youtube.com/watch?v=C-fnycmIhKw&list=PLEwK9wdS5g0qV-430pfXzTawd6pI_VUgq&index=38 Видео]
 +
<div class="mw-collapsible-content" style="display: none;">
 +
:3. [https://drive.google.com/file/d/1vZQwsB0qmk5e0hYqGIE1NrVbnmC4W9T4/view?usp=sharing Свойства интеграла как функционала]
 +
 
 +
::3.1 Линейность интеграла
 +
 
 +
::3.2 Интегрируемость произведения интегрируемых функций
 +
 
 +
::3.3 Интегрируемость композиции непрерывной и интегрируемой
 +
 
 +
::3.4 Неравенство для модуля интеграла
 +
 
 +
::3.5 Монотонность интеграла
 +
 
 +
::3.6 Теорема о среднем значении
 +
 
 +
::3.7 Непрерывность интеграла
 +
 
 +
:4. [https://drive.google.com/file/d/19wrlPiugnQotJWPWNj0BoSR-kAqKVBSF/view?usp=sharing Свойства интеграла как функции множества]
 +
 
 +
::4.1 Аддитивность интеграла
 +
 
 +
</div></div>
 +
<div class="mw-collapsible mw-collapsed">
 +
''' Лекция 2.4 ''' (17.11.20) [https://www.youtube.com/watch?v=THkn-Deo91o&list=PLEwK9wdS5g0qV-430pfXzTawd6pI_VUgq&index=41 Видео]
 +
<div class="mw-collapsible-content" style="display: none;">
 +
 
 +
::4.2 Заряд и его плотность
 +
 
 +
::4.3 О заряде, имеющем нулевую плотность
 +
 
 +
::4.4 Выражение меры через плотность
 +
 
 +
:5. [https://drive.google.com/file/d/107MyoL4NhTHbof2QsbpIQp4Yof9eNijz/view?usp=sharing Сведение кратного интеграла к повторному]
 +
 
 +
::5.1 Произведение мер
 +
 
 +
::5.2 Интеграл по декартову произведению
 +
 
 +
</div></div>
 +
<div class="mw-collapsible mw-collapsed">
 +
''' Лекция 2.5 ''' (24.11.20) [https://www.youtube.com/watch?v=1kU-v5Xmins&list=PLEwK9wdS5g0qV-430pfXzTawd6pI_VUgq&index=50 Видео]
 +
<div class="mw-collapsible-content" style="display: none;">
 +
::5.3 Интеграл по множеству с измеримыми слоями
 +
 
 +
::5.4 Интеграл по цилиндрической области
 +
 
 +
:6. [https://drive.google.com/file/d/1UorRQeBK0y0OLRg5VPaF3YgBy2-HTXYt/view?usp=sharing Криволинейные координаты]
 +
 
 +
::6.1 Общие понятия
 +
 
 +
::6.2 Полярные координаты
 +
 
 +
::6.3 Цилиндрические координаты
 +
 
 +
::6.4 Сферические координаты
 +
 
 +
:7. [https://drive.google.com/file/d/15TDQMKflemWgqDzZpTkT_qI81ercCYit/view?usp=sharing Замена переменных в кратном интеграле]
 +
 
 +
::7.1 Образ жорданова множества
 +
 
 +
</div></div>
 +
<div class="mw-collapsible mw-collapsed">
 +
''' Лекция 2.6 ''' (01.12.20) [https://www.youtube.com/watch?v=TozDwzX2KHk&list=PLEwK9wdS5g0qV-430pfXzTawd6pI_VUgq&index=61 Видео]
 +
<div class="mw-collapsible-content" style="display: none;">
 +
::7.2 Преобразование объема при диффеоморфизме
 +
 
 +
::7.3 Теорема о замене переменных
 +
 
 +
::7.4 Внешнее умножение дифференциалов и преобразование элемента объема
 +
 
 +
:8. [https://drive.google.com/file/d/1UC4wegGedRxxkAfiAuOdJTkbuOrwfV8C/view?usp=sharing Геометрические приложения кратного интеграла]
 +
 
 +
::8.1 Объем, ограниченный графиком
 +
 
 +
::8.2 Понятие площади поверхности (начало)
 +
</div></div>
 +
<div class="mw-collapsible mw-collapsed">
 +
''' Лекция 2.7 ''' (08.12.20) [https://www.youtube.com/watch?v=taxXYaHdJEU&list=PLEwK9wdS5g0qV-430pfXzTawd6pI_VUgq&index=64 Видео]
 +
<div class="mw-collapsible-content" style="display: none;">
 +
::8.2 Понятие площади поверхности (продолжение)
 +
 
 +
::8.3 Независимость площади от параметризации
 +
 
 +
::8.4 Частные случаи в малых размерностях
 +
 
 +
:9. [https://drive.google.com/file/d/1xF_PDUFaWQtjqseaH3DyOMbG089xWBdP/view?usp=sharing Несобственный кратный интеграл] ['''З'''11.6]
 +
 
 +
::9.1 Исчерпание множества
 +
 
 +
::9.2 Определение несобственного интеграла
 +
 
 +
::9.3 Несобственный интеграл от неотрицательной функции
 +
 
 +
::9.4 Теорема об абсолютной сходимости ['''Ф'''613]
 +
 
 +
::9.5 Мажорантный признак сходимости
 +
 
 +
</div></div>
 +
<div class="mw-collapsible mw-collapsed">
 +
''' Лекция 2.8 ''' (15.12.20) [https://www.youtube.com/watch?v=SDMwzK_aW0w&list=PLEwK9wdS5g0qV-430pfXzTawd6pI_VUgq&index=70 Видео]
 +
<div class="mw-collapsible-content" style="display: none;">
 +
:10. [https://drive.google.com/file/d/1ZQRlamU7-vXjqo6T2wZHzQufrG8Mcstw/view?usp=sharing Изопериметрическое неравенство]
 +
 
 +
::10.1 Сумма множеств по Минковскому
 +
 
 +
::10.2 Неравенство Брунна - Минковского
 +
 
 +
::10.3 Площадь поверхности по Минковскому
 +
 
 +
::10.4 Изопериметрическое неравенство
 +
 
 +
</div></div>
 +
 
 +
=== Коллоквиум 2 ===
 +
 
 +
[https://drive.google.com/file/d/1sk9CFyC1huc6gmVwcwq4x-DDzbah8Scn/view?usp=sharing Вопросы]
 +
 
 +
Коллоквиум состоится 19.12 (суббота) в 11:10. Формат коллоквиума - дистанционный. Материал лекции 15.12 в него не войдет.
 +
 
 +
=== Модуль 3 ===
 +
<div class="mw-collapsible mw-collapsed">
 +
''' Лекция 3.1 ''' (12.01.21) [https://www.youtube.com/watch?v=MG5TcrT7fHM&list=PLEwK9wdS5g0qV-430pfXzTawd6pI_VUgq&index=77 Видео]
 +
<div class="mw-collapsible-content" style="display: none;">
 +
'''III. Интегралы, зависящие от параметра'''
 +
::1. Собственный интеграл с параметром и его свойства ['''З'''17.1]
 +
 
 +
</div></div>
 +
<div class="mw-collapsible mw-collapsed">
 +
''' Лекция 3.2 ''' (19.01.21) [https://www.youtube.com/watch?v=f8wRBKG1Duk&list=PLEwK9wdS5g0qV-430pfXzTawd6pI_VUgq&index=88 Видео]
 +
<div class="mw-collapsible-content" style="display: none;">
 +
::2. Равномерная сходимость семейства функций ['''З'''16.1]
 +
 
 +
::3. Свойства равномерно сходящегося семейства функций ['''З'''16.3]
 +
 
 +
</div></div>
 +
<div class="mw-collapsible mw-collapsed">
 +
''' Лекция 3.3 ''' (26.01.21) [https://www.youtube.com/watch?v=kONHPWLKd0Y&list=PLEwK9wdS5g0qV-430pfXzTawd6pI_VUgq&index=89 Видео]
 +
<div class="mw-collapsible-content" style="display: none;">
 +
::4. Равномерная сходимость несобственного интеграла ['''З'''17.2]
 +
 
 +
</div></div>
 +
<div class="mw-collapsible mw-collapsed">
 +
''' Лекция 3.4 ''' (02.02.21) [https://www.youtube.com/watch?v=mXCrIvkigVs&list=PLEwK9wdS5g0qV-430pfXzTawd6pI_VUgq&index=95 Видео]
 +
<div class="mw-collapsible-content" style="display: none;">
 +
::5. Свойства равномерно сходящегося несобственного интеграла ['''З'''17.2]
 +
 
 +
</div></div>
 +
<div class="mw-collapsible mw-collapsed">
 +
''' Лекция 3.5 ''' (09.02.21) [https://www.youtube.com/watch?v=FkkdjVD8tAs&list=PLEwK9wdS5g0qV-430pfXzTawd6pI_VUgq&index=103 Видео]
 +
<div class="mw-collapsible-content" style="display: none;">
 +
::5. Свойства равномерно сходящегося несобственного интеграла ['''З'''17.2] (продолжение)
 +
 
 +
</div></div>
 +
<div class="mw-collapsible mw-collapsed">
 +
''' Лекция 3.6 ''' (16.02.21) [https://www.youtube.com/watch?v=sQQ1P2yIWnk&list=PLEwK9wdS5g0qV-430pfXzTawd6pI_VUgq&index=107 Видео]
 +
<div class="mw-collapsible-content" style="display: none;">
 +
::6. Эйлеровы бета- и гамма-функции
 +
 
 +
</div></div>
 +
<div class="mw-collapsible mw-collapsed">
 +
''' Лекция 3.7 ''' (02.03.21) [https://www.youtube.com/watch?v=rBMqoCafTp8&list=PLEwK9wdS5g0qV-430pfXzTawd6pI_VUgq&index=118 Видео]
 +
<div class="mw-collapsible-content" style="display: none;">
 +
'''IV. Ряды и преобразование Фурье'''
 +
::1. Абстрактные ряды Фурье
 +
 
 +
</div></div>
 +
<div class="mw-collapsible mw-collapsed">
 +
''' Лекция 3.8 ''' (09.03.21) [https://www.youtube.com/watch?v=KhXNhC-hFsc&list=PLEwK9wdS5g0qV-430pfXzTawd6pI_VUgq&index=123 Видео]
 +
<div class="mw-collapsible-content" style="display: none;">
 +
::1. Абстрактные ряды Фурье (продолжение)
 +
 
 +
::2. Тригонометрические ряды Фурье
 +
 
 +
</div></div>
 +
<div class="mw-collapsible mw-collapsed">
 +
''' Лекция 3.9 ''' (16.03.21) [https://www.youtube.com/watch?v=AG4OOPAFyN4&list=PLEwK9wdS5g0qV-430pfXzTawd6pI_VUgq&index=128 Видео]
 +
<div class="mw-collapsible-content" style="display: none;">
 +
::2. Тригонометрические ряды Фурье (продолжение)
 +
 
 +
</div></div>
 +
<div class="mw-collapsible mw-collapsed">
 +
''' Лекция 3.10 ''' (23.03.21) [https://www.youtube.com/watch?v=DkWKc-Pj1OM&list=PLEwK9wdS5g0qV-430pfXzTawd6pI_VUgq&index=131 Видео]
 +
<div class="mw-collapsible-content" style="display: none;">
 +
::3. Преобразование Фурье
 +
 
 +
::4. Дискретное преобразование Фурье
 +
 
 +
</div></div>
 +
=== Коллоквиум 3 ===
 +
 
 +
[https://drive.google.com/file/d/1QnaWLM231Hn8AOg_mrkDOsIeLB20PUno/view?usp=sharing Вопросы]
 +
 
 +
Коллоквиум состоится на последнем семинаре модуля. Формат коллоквиума - письменный зачет по теории. Материал лекции 23.03 в него не войдет.
 +
 
 +
=== Модуль 4 ===
 +
 
 +
<div class="mw-collapsible mw-collapsed">
 +
''' Лекция 4.1 ''' (06.04.21) [https://www.youtube.com/watch?v=h_VmHDiSPJI&list=PLEwK9wdS5g0qV-430pfXzTawd6pI_VUgq&index=134 Видео]
 +
<div class="mw-collapsible-content" style="display: none;">
 +
'''V. Криволинейные и поверхностные интегралы'''
 +
:1. Криволинейный и поверхностный интеграл I-го рода ['''З'''12.1, 12.4, 13.1, 13.2]
 +
::1.1 Понятия гладкой кривой и гладкой поверхности (напоминание)
 +
::1.2 Длина гладкой кривой и площадь гладкой поверхности (напоминание)
 +
::1.3 Криволинейный интеграл I-го рода
 +
::1.4 Физические понятия, связанные с криволинейным интегралом I-го рода (масса и заряд материальной кривой, центр масс кривой)
 +
::1.5 Поверхностный интеграл I-го рода
 +
::1.6 Физические понятия, связанные с поверхностным интегралом I-го рода (масса и заряд материальной поверхности, центр масс поверхности, теоремы Гульдина)
 +
</div></div>
 +
<div class="mw-collapsible mw-collapsed">
 +
''' Лекция 4.2 ''' (13.04.21) [https://www.youtube.com/watch?v=H9sgI2O2Pdg&list=PLEwK9wdS5g0qV-430pfXzTawd6pI_VUgq&index=145 Видео]
 +
<div class="mw-collapsible-content" style="display: none;">
 +
:2. Ориентация пространства, кривой и поверхности ['''З'''12.2, 12.3]
 +
::2.1 Ориентация пространства и элементарной гладкой поверхности
 +
::2.2 Понятие гладкого многообразия: карты и атлас
 +
::2.3 Гладкое многообразие с краем
 +
::2.4 Ориентируемость и ориентация гладкого многообразия (кривой и поверхности)
 +
::2.5 Согласованная ориентация края поверхности (не успели)
 +
</div></div>
 +
<div class="mw-collapsible mw-collapsed">
 +
''' Лекция 4.3 ''' (20.04.21) [https://www.youtube.com/watch?v=WS-N2Dka3xU&list=PLEwK9wdS5g0qV-430pfXzTawd6pI_VUgq&index=148 Видео]
 +
<div class="mw-collapsible-content" style="display: none;">
 +
:3. Криволинейный интеграл II-го рода и формула Грина ['''З'''12.5, 13.1, 13.2, 13.3]
 +
::3.1 Дифференциальная 1-форма в области пространства
 +
::3.2 Дифференциальная 1-форма на кривой
 +
::3.3 Криволинейный интеграл II-го рода
 +
::3.4 Выражение криволинейного интеграла II-го рода через криволинейный интеграл I-го рода
 +
::3.5 Формула Грина и ее приложение к вычислению площади
 +
::3.6 Внешний дифференциал 1-формы и краткая запись формулы Грина
 +
</div></div>
 +
<div class="mw-collapsible mw-collapsed">
 +
''' Лекция 4.4 ''' (27.04.21) [https://www.youtube.com/watch?v=t2u_ZUzT1Mo&list=PLEwK9wdS5g0qV-430pfXzTawd6pI_VUgq&index=156 Видео]
 +
<div class="mw-collapsible-content" style="display: none;">
 +
:4. Поверхностный интеграл II-го рода. Формулы Остроградского - Гаусса и Стокса ['''З'''12.5, 13.1, 13.2, 13.3]
 +
</div></div>
 +
<div class="mw-collapsible mw-collapsed">
 +
''' Лекция 4.5 ''' (11.05.21) [https://www.youtube.com/watch?v=lUqrd4aP3Zc&list=PLEwK9wdS5g0qV-430pfXzTawd6pI_VUgq&index=163 Видео]
 +
<div class="mw-collapsible-content" style="display: none;">
 +
'''VI. Элементы комплексного анализа'''
 +
:1. Введение в комплексный анализ
 +
::1.1 Комплексная плоскость
 +
::1.2 Сфера Римана
 +
::1.3 Функция комплексной переменной
 +
::1.4 Многозначность
 +
::1.5 Многолистность и риманова поверхность
 +
</div></div>
 +
<div class="mw-collapsible mw-collapsed">
 +
''' Лекция 4.6 ''' (18.05.21)
 +
<div class="mw-collapsible-content" style="display: none;">
 +
::1.6 Предел и непрерывность
 +
 
 +
:2. Голоморфные функции и формула Коши
 +
::2.1 Линейные отображения
 +
::2.2 Дифференцируемость
 +
::2.3 Голоморфность
 +
::2.4 Интеграл и теорема Коши
 +
::2.5 Интегральные формулы Коши - Грина и Коши
 +
</div></div>
 +
''' Лекция 4.7 ''' (25.05.21)
 +
:3. Свойства голоморфных функций
 +
::3.1 Голоморфность композиции (в частности: суммы, произведения, частного)
 +
::3.2 Голоморфность обратной функции
 +
::3.3 Аналитичность голоморфной функции. Неравенство Коши (для коэффициентов ряда)
 +
::3.4 Бесконечная дифференцируемость и голоморфность аналитической функции
 +
 
 +
''' Лекция 4.8 ''' (01.06.21)
 +
::3.5 Голоморфность и радиус сходимости
 +
::3.6 Теорема Лиувилля (о голоморфной и ограниченной на всей плоскости функции)
 +
::3.7 Теорема единственности аналитической функции
 +
 
 +
:4. Однозначные особые точки и ряд Лорана
 +
::4.1 Однозначные особые точки
 +
::4.2 Устранимая особенность
 +
::4.3 Полюс
 +
::4.4 Существенная особенность
 +
 
 +
''' Лекция 4.9 ''' (08.06.21)
 +
::4.5 Ряд Лорана
 +
::4.6 Единственность разложения Лорана
 +
::4.7 Главная часть ряда Лорана и классификация особых точек
 +
 
 +
:5. Теория вычетов и ее приложения
 +
::5.1 Понятие вычета и теорема Коши о вычетах
 +
::5.2 Вычисление вычета
 +
::5.3 Пример применения вычетов для вычисления несобственного интеграла
 +
 
 +
''' Лекция 4.10 ''' (15.06.21)
 +
 
 +
::5.4 Применение вычетов к суммированию рядов
 +
::5.5 Примеры суммирования рядов
 +
::5.6 Разложение мероморфной функции в сумму простейших дробей
 +
::5.7 Разложения tg и ctg
 +
 
 +
=== Коллоквиум 4 ===
 +
 
 +
[https://drive.google.com/file/d/14cNhsdJM5LLCd2n28fe65MBZqJYMv4_L/view?usp=sharing Вопросы]
 +
 
 +
Коллоквиум состоится на последнем семинаре модуля. Формат коллоквиума - письменный зачет по теории. Материал последней лекции модуля в него не войдет.
 +
 
 +
== Семинары, домашние задания, самостоятельные работы и экзамены ==
 +
 
 +
=== О домашних заданиях ===
 +
 
 +
К каждому семинару выдается список задач. Некоторые задачи из этого списка рассматриваются на семинаре, остальное - ДЗ.   
  
 
Задачи со звездочками предназначены для интересующихся студентов. Эти задачи не проверяются и никак не учитываются.
 
Задачи со звездочками предназначены для интересующихся студентов. Эти задачи не проверяются и никак не учитываются.
 +
 +
=== О самостоятельных работах ===
 +
 +
На следующем семинаре проводится самостоятельная работа по темам предыдущего семинара. Каждому студенту предлагается решить 1 задачу, аналогичную задачам из списка. Самостоятельная оценивается по системе 0-1-2. 
 +
 +
Если студент пропустил самостоятельную по уважительной причине, то ему предлагается альтернатива. Либо он пишет работу в присутствии преподавателя в дополнительное время (и тогда работа оценивается по той же системе 0-1-2), либо он получает задание и пишет работу в свободном режиме дома (и тогда работа оценивается по системе 0-1).
 +
 +
=== Об экзаменах ===
 +
 +
На экзамен выносятся все темы, пройденные на семинарах, кроме тем последних семинаров модулей. Для подготовки рекомендуется решать задачи из соответствующих списков. Теоретический материал (в том числе теоретические задачи) в экзамены не входит.
 +
 +
Демонстрационные варианты экзамена показывают примерный уровень сложности заданий и их примерное распределение по темам. Не следует думать, что задания экзаменационных вариантов обязательно будут таких же типов.
  
 
=== Модуль 1 ===
 
=== Модуль 1 ===
  
 
''' Семинар 1.1 '''  
 
''' Семинар 1.1 '''  
[https://drive.google.com/file/d/1LXjuUuRBxIO_kqUInrMZo_LQegL6QnQq/view?usp=sharing Задачи]
+
Частичная сумма ряда. Необходимое условие сходимости. [https://drive.google.com/file/d/1LXjuUuRBxIO_kqUInrMZo_LQegL6QnQq/view?usp=sharing Задачи]
  
 
''' Семинар 1.2 '''
 
''' Семинар 1.2 '''
[https://drive.google.com/file/d/1Tq-0--RUERQ4Ku_bKPn5yJAIk-hhXcmo/view?usp=sharing Задачи]
+
Положительные ряды. [https://drive.google.com/file/d/1Tq-0--RUERQ4Ku_bKPn5yJAIk-hhXcmo/view?usp=sharing Задачи]
 +
 
 +
''' Семинар 1.3 '''
 +
Знакопеременные ряды. [https://drive.google.com/file/d/1Q9QC9UOaZzCzMWsFy4DyXT6eXi8nDpjK/view?usp=sharing Задачи]
 +
 
 +
''' Семинар 1.4 '''
 +
Бесконечные произведения. Функциональные последовательности. [https://drive.google.com/file/d/11_QQvKWSguVkGDcB1hrrkehn2Yk_TG-n/view?usp=sharing Задачи]
 +
 
 +
''' Семинар 1.5 '''
 +
Исследование сходимости функциональных рядов. [https://drive.google.com/file/d/1fQrki9ZL5c0HrEhofH_uNuXEiHpLpsze/view?usp=sharing Задачи]
 +
 
 +
''' Семинар 1.6 '''
 +
Степенные ряды. Ряды Тейлора. [https://drive.google.com/file/d/1I_q3680gMj_S8oAFX7zVwhVU5vWXZhyB/view?usp=sharing Задачи]
 +
 
 +
''' Семинар 1.7 '''
 +
Итоговое повторение по темам модуля. [https://drive.google.com/file/d/1uyr7JODtdJVIeGsqF-t6c-7-mVfiauML/view?usp=sharing Задачи] - факультативно
  
 
=== Модуль 2 ===
 
=== Модуль 2 ===
 +
 +
''' Семинар 2.1 '''
 +
Мера Жордана. [https://drive.google.com/file/d/1wnu5GBZyl1_gg25AbnID3Lb0uN4g4OAw/view?usp=sharing Теоретические задачи]
 +
 +
''' Семинар 2.2 '''
 +
Кратный интеграл Римана. [https://drive.google.com/file/d/1ApiMiFLy40cGulw-VYhLgtJoQ5jTyJGd/view?usp=sharing Теоретические задачи]
 +
 +
''' Семинар 2.3 '''
 +
Вычисление кратного интеграла. [https://drive.google.com/file/d/1p8Q4JHWyuvApIFM8_lLXc1_G8xjhNcQb/view?usp=sharing Задачи]
 +
 +
''' Семинар 2.4 '''
 +
Вычисление кратного интеграла. [https://drive.google.com/file/d/1ASW8nVMAlV0lfBasbwy351q2AS7UlYC2/view?usp=sharing Задачи]
 +
 +
''' Семинар 2.5 '''
 +
Замена переменных в кратном интеграле. [https://drive.google.com/file/d/1dk-R2NRuasMa8ABvUUsGrRMIAhLFDWVN/view?usp=sharing Задачи]
 +
 +
''' Семинар 2.6 '''
 +
Геометрические приложения кратного интеграла. [https://drive.google.com/file/d/1ojG2S7n_YdKjtYkxgUEXNYF_3jezTyA-/view?usp=sharing Задачи]
 +
 +
''' Семинар 2.7 '''
 +
Несобственный кратный интеграл. [https://drive.google.com/file/d/1-EIflY12zmieoQEC6XmtqgChSwMzhDEM/view?usp=sharing Задачи]
 +
 +
''' Семинар 2.8 '''
 +
Итоговое повторение по темам модуля и семестра.
 +
 +
=== Экзамен 1 ===
 +
 +
Экзамен состоится 24 декабря в 14:00. Формат: 6 вычислительных задач на 90 минут. По окончании листы надо сфотографировать и выслать преподавателю, ведущему семинары, с копией лектору (тема письма: '''группа_Фамилия_Имя''', например: 190_Маевский_Евгений). Проверка: каждое задание оценивается по системе 0-1-2. Показ работ: по согласованию с семинаристом.
 +
 +
Тематическое распределение заданий:
 +
# Исследование числового ряда на сходимость или абсолютную сходимость
 +
# Исследование функционального ряда на равномерную сходимость
 +
# Вычисление области сходимости степенного ряда
 +
# Замена переменных в кратном интеграле
 +
# Вычисление объема тела или площади поверхности
 +
# Исследование сходимости несобственного кратного интеграла
 +
 +
[https://drive.google.com/file/d/1RFtSlDpUq1Lstn3EvbHZwJGd8tWkeUIV/view?usp=sharing Демо-варианты экзамена]
 +
 +
=== Модуль 3 ===
 +
 +
''' Семинар 3.1 ''' Собственный интеграл, зависящий от параметра.
 +
[https://drive.google.com/file/d/1Y3QyHWwQmmBDM3R9VaDVocI7xSj0hMn4/view?usp=sharing Задачи]
 +
 +
''' Семинар 3.2 ''' Равномерная сходимость системы функций.
 +
[https://drive.google.com/file/d/1NXWKueqb_48xfs6OQhMwSW9KNAHCHO_Y/view?usp=sharing Задачи]
 +
 +
''' Семинар 3.3 ''' Равномерная сходимость несобственного интеграла.
 +
[https://drive.google.com/file/d/1JEp0LOIHlhXf5CO-2hnLkRFfIFRj7QDi/view?usp=sharing Задачи]
 +
 +
''' Семинар 3.4 ''' Предельный переход под знаком несобственного интеграла.
 +
[https://drive.google.com/file/d/19kxPaSSdcB3zUmfe-Gyt8FSW6Ly0OoxC/view?usp=sharing Задачи]
 +
 +
''' Семинар 3.5 ''' Дифференцирование под знаком несобственного интеграла.
 +
[https://drive.google.com/file/d/14Avpryc-LAQjiCuy37j2OMsri4z1MmDJ/view?usp=sharing Задачи]
 +
 +
''' Семинар 3.6 ''' Эйлеровы интегралы.
 +
[https://drive.google.com/file/d/1OkPEGAXzQh1bfFIJ225sXQCPG8CsrItS/view?usp=sharing Задачи]
 +
 +
''' Семинар 3.7 ''' Ряды Фурье.
 +
[https://drive.google.com/file/d/1FjKzXQ6ffp4PZWZYPMNOnCh-RQA6zN-0/view?usp=sharing Задачи]
 +
 +
''' Семинар 3.8 ''' Ряды Фурье.
 +
[https://drive.google.com/file/d/1UsMyL9VS5QPhsjTb0yCGPGMkUluUPH0i/view?usp=sharing Задачи]
 +
 +
''' Семинар 3.9 ''' Преобразование Фурье.
 +
[https://drive.google.com/file/d/1Y4eZvrxwpyhrnz3Cug5v7Adz_bSHAkDa/view?usp=sharing Задачи]
 +
 +
''' Семинар 3.10 ''' Коллоквиум-3
 +
 +
=== Модуль 4 ===
 +
 +
''' Семинар 4.1 ''' Криволинейный интеграл I-го рода.
 +
[https://drive.google.com/file/d/1PXzOKNdBtvQt_ZLFnmfIY-liy7odwHkG/view?usp=sharing Задачи]
 +
 +
''' Семинар 4.2 ''' Поверхностный интеграл I-го рода.
 +
[https://drive.google.com/file/d/1nAoJ59Dax5nRsxHtLS0wAJUXvIb8Mk2K/view?usp=sharing Задачи]
 +
 +
''' Семинар 4.3 ''' Криволинейный интеграл II-го рода. Формула Грина.
 +
[https://drive.google.com/file/d/1bS2_2s1GnjRt9bJ8UVYxHuUuXpFNVrxd/view?usp=sharing Задачи]
 +
 +
''' Семинар 4.4 ''' Поверхностный интеграл II-го рода. Формулы Остроградского - Гаусса и Стокса.
 +
[https://drive.google.com/file/d/1oW7AGUOdSudF7zJyaD5hJZomV9BoNDF0/view?usp=sharing Задачи]
 +
 +
''' Семинар 4.5 ''' Введение в комплексный анализ.
 +
[https://drive.google.com/file/d/1nKWQply8HVghDIoxoOwyc6TYGcw4MAgH/view?usp=sharing Задачи]
 +
 +
''' Семинар 4.6 ''' Непрерывность и голоморфность.
 +
[https://drive.google.com/file/d/1wehu3hFsLocPcxD5xNdmGii5eFidSBfO/view?usp=sharing Задачи]
 +
 +
''' Семинар 4.7 ''' Конформные отображения.
 +
[https://drive.google.com/file/d/1W4JiBdKPOPlwX_Y8RW5tw30gcWw_uXsD/view?usp=sharing Задачи]
 +
 +
''' Семинар 4.8 ''' Однозначные особые точки и ряд Лорана.
 +
[https://drive.google.com/file/d/1s_mxrkDZMX9xFMzrpF60I7Rk47jEAwv_/view?usp=sharing Задачи]
 +
 +
''' Семинар 4.9 ''' Теория вычетов и ее приложения.
 +
[https://drive.google.com/file/d/19aCOjxOvc9NU3rKL0c2Bi4MiRsYPUWBC/view?usp=sharing Задачи]
 +
 +
''' Семинар 4.10 ''' Коллоквиум-4
 +
 +
=== Экзамен 2 ===
 +
 +
Экзамен состоится 24 июня в 15:00. Формат: 6 вычислительных задач на 180 минут. По окончании листы надо сфотографировать и выслать преподавателю, ведущему семинары, с копией лектору (тема письма: '''группа_Фамилия_Имя''', например: 190_Маевский_Евгений). Проверка: каждое задание оценивается по системе 0-1-2 балла. Баллы за задачи суммируются и срезаются 10-ю баллами взятием min(10, summa). Показ работ: по согласованию с семинаристом.
 +
 +
Тематическое распределение заданий:
 +
# Интеграл, зависящий от параметра (вычисление интеграла с помощью перехода к пределу или дифференцирования под знаком интеграла)
 +
# Ряды Фурье (разложение функции в тригонометрический ряд Фурье)
 +
# Криволинейный интеграл (вычисление криволинейного интеграла I-го или II-го рода, без формул Грина и Стокса)
 +
# Поверхностный интеграл (вычисление поверхностного интеграла I-го или II-го рода, без формулы Остроградского - Гаусса)
 +
# Элементы комплексного анализа (уравнения Коши - Римана, дробно-линейное отображение, разложение в ряд Лорана, вычеты и их приложения)
 +
# Задача по материалу I-го семестра (аналогичная одной из задач Экзамена-1)
 +
 +
Демо-вариантов не будет, поскольку их наличие в I-м семестре было истолковано неверно.
  
 
== Ведомость с оценками ==
 
== Ведомость с оценками ==
Строка 124: Строка 746:
 
{| class="wikitable" style="text-align:center"
 
{| class="wikitable" style="text-align:center"
 
|-
 
|-
! [ 193] !! [ 195] !! [ 196]
+
| [https://docs.google.com/spreadsheets/d/1ms1cQ1IwD-9xUhQ9EnakpW3RJ5WihHrRp6IE08_6xoo/edit?ts=5f58d430#gid=0 193] || [https://docs.google.com/spreadsheets/d/1tjrklYdw1_bPYmwJjmerL1WtJHMD0Q-f/edit#gid=1767083025 195] || [https://docs.google.com/spreadsheets/d/19yDbygUQzFVQIhaJ9DPqLEnVXUB_oh8VYnxcxiO8RHQ/edit#gid=0 196] || [https://docs.google.com/spreadsheets/d/1J2Byejj5TkuhatDQY1xRECtQ_fAc-c9vKO4e4tVZEt4/edit#gid=0 197] || [https://docs.google.com/spreadsheets/d/1hWU5Wqu7fXrhTuMIy-426N4XI4xzJE9ZVnqbYIstOak/edit#gid=0 198] || [https://docs.google.com/spreadsheets/d/1oeV2sM6X3YqST-LVA_0zLAbPP8Bfn22U_75vev8x3SI/edit?usp=sharing 199] || [https://docs.google.com/spreadsheets/d/18U6mgok6Ly9f6lw5CRAeka5nX6THEOc02zbKr1q2zRs/edit?usp=sharing 1910] || [https://docs.google.com/spreadsheets/d/1yDjuO6htLAyf6KwwNG0qr-RqO8IucjRrzC69_5zTuWg/edit?usp=sharing 1911]
 
|}
 
|}
  
 
== Формы контроля и оценивание ==
 
== Формы контроля и оценивание ==
Курс Математический анализ - 2 читается в 1, 2, 3 и 4 модулях.
 
 
  
 
В течение года установлены следующие формы контроля:
 
В течение года установлены следующие формы контроля:
* два письменных экзамена (ЭК<sub>1</sub> и ЭК<sub>2</sub>);
+
* 2 письменных экзамена (<b>e</b><sub>1</sub>, <b>e</b><sub>2</sub> - 10-балльные оценки за экзамены);
* четыре коллоквиума (<sub>1</sub>, КЛ<sub>2</sub>, <sub>3</sub>, КЛ<sub>4</sub>);
+
* 4 коллоквиума (<b>k</b><sub>1</sub>, <b>k</b><sub>2</sub>, <b>k</b><sub>3</sub>, <b>k</b><sub>4</sub> - 10-балльные оценки за коллоквиумы);
* n самостоятельных работ (СР<sub>1</sub> и СР<sub>2</sub>, где СР<sub>i</sub> --- есть среднее арифметическое оценок всех самостоятельных работ, проведенных в i-м семестре).
+
* некоторое число самостоятельных работ (<b>s</b><sub>1</sub>, <b>s</b><sub>2</sub>, <b>s</b><sub>3</sub>, <b>s</b><sub>4</sub> - средние оценки за самостоятельные работы по модулям, приведенные к 10-балльной шкале).
 +
 
 +
Все оценки считаются и учитываются без округлений. Округление производится по общепринятому правилу: round(<i>x</i>)=floor(<i>x</i>+0.5) непосредственно перед выставлением оценок в официальные бумаги.
 +
 
 +
Итоговая оценка 1-го семестра:
 +
<blockquote>
 +
<b>i</b><sub>1</sub>=0.125<b>n</b><sub>1</sub>+0.5<b>e</b><sub>1</sub>,
 +
где <b>n</b><sub>1</sub>=<b>s</b><sub>1</sub>+<b>s</b><sub>2</sub>+<b>k</b><sub>1</sub>+<b>k</b><sub>2</sub>
 +
</blockquote>
 +
 
 +
Если <b>n</b><sub>1</sub>≥38, то студент освобождается от экзамена и выставляется автоматом <b>e</b><sub>1</sub>=10.
 +
 
 +
Если 38&gt;<b>n</b><sub>1</sub>≥32, то студент (по умолчанию) освобождается от экзамена и выставляется автоматом <b>e</b><sub>1</sub>=0.25<b>n</b><sub>1</sub> (без округления). Если все же студент желает сдавать экзамен, то сообщить об этом следует не позднее, чем за 3 дня до экзамена.
 +
 
 +
Итоговая оценка 2-го семестра:
 +
<blockquote>
 +
<b>i</b><sub>2</sub>=0.125<b>n</b><sub>2</sub>+0.5<b>e</b><sub>2</sub>,
 +
где <b>n</b><sub>2</sub>=<b>s</b><sub>3</sub>+<b>s</b><sub>4</sub>+<b>k</b><sub>3</sub>+<b>k</b><sub>4</sub>
 +
</blockquote>
 +
 
 +
Если <b>n</b><sub>2</sub>≥38, то студент освобождается от экзамена и выставляется автоматом <b>e</b><sub>2</sub>=10.
 +
 
 +
Если 38&gt;<b>n</b><sub>2</sub>≥32, то студент (по умолчанию) освобождается от экзамена и выставляется автоматом <b>e</b><sub>2</sub>=0.25<b>n</b><sub>2</sub> (без округления). Если все же студент желает сдавать экзамен, то сообщить об этом следует не позднее, чем за 3 дня до экзамена.
 +
 
 +
Итоговая оценка за курс:
 +
<blockquote><b>i</b>=0.5(<b>i</b><sub>1</sub> + <b>i</b><sub>2</sub>)</blockquote>
 +
(округляется непосредственно перед выставлением в итоговую ведомость)
  
 
'''<span style="color:#8B0000">Блокирующих форм контроля нет.</span>'''
 
'''<span style="color:#8B0000">Блокирующих форм контроля нет.</span>'''
  
 
== Список рекомендуемой литературы ==
 
== Список рекомендуемой литературы ==
['''Ф'''] Фихтенгольц Г.М. - Курс дифференциального и интегрального исчисления
 
[http://93.174.95.29/main/6000/d845bb5eebfd1c3338dc0aab716ef239/%D0%A4%D0%B8%D1%85%D1%82%D0%B5%D0%BD%D0%B3%D0%BE%D0%BB%D1%8C%D1%86.%20-%20%D0%9A%D1%83%D1%80%D1%81%20%D0%B4%D0%B8%D1%84%D1%84%D0%B5%D1%80%D0%B5%D0%BD%D1%86%D0%B8%D0%B0%D0%BB%D1%8C%D0%BD%D0%BE%D0%B3%D0%BE%20%D0%B8%20%D0%B8%D0%BD%D1%82%D0%B5%D0%B3%D1%80%D0%B0%D0%BB%D1%8C%D0%BD%D0%BE%D0%B3%D0%BE%20%D0%B8%D1%81%D1%87%D0%B8%D1%81%D0%BB%D0%B5%D0%BD%D0%B8%D1%8F.%20%D0%A2%D0%BE%D0%BC%201%20%281969%29.djvu Том 1]
 
[http://93.174.95.29/main/6000/ab96d394869b0986296dc499eb9a1552/%D0%A4%D0%B8%D1%85%D1%82%D0%B5%D0%BD%D0%B3%D0%BE%D0%BB%D1%8C%D1%86.%20-%20%D0%9A%D1%83%D1%80%D1%81%20%D0%B4%D0%B8%D1%84%D1%84%D0%B5%D1%80%D0%B5%D0%BD%D1%86%D0%B8%D0%B0%D0%BB%D1%8C%D0%BD%D0%BE%D0%B3%D0%BE%20%D0%B8%20%D0%B8%D0%BD%D1%82%D0%B5%D0%B3%D1%80%D0%B0%D0%BB%D1%8C%D0%BD%D0%BE%D0%B3%D0%BE%20%D0%B8%D1%81%D1%87%D0%B8%D1%81%D0%BB%D0%B5%D0%BD%D0%B8%D1%8F.%20%D0%A2%D0%BE%D0%BC%202%20%281969%29.djvu Том 2]
 
[http://93.174.95.29/main/6000/48646fea612ac1977dc4586e3ef79d34/%D0%A4%D0%B8%D1%85%D1%82%D0%B5%D0%BD%D0%B3%D0%BE%D0%BB%D1%8C%D1%86.%20-%20%D0%9A%D1%83%D1%80%D1%81%20%D0%B4%D0%B8%D1%84%D1%84%D0%B5%D1%80%D0%B5%D0%BD%D1%86%D0%B8%D0%B0%D0%BB%D1%8C%D0%BD%D0%BE%D0%B3%D0%BE%20%D0%B8%20%D0%B8%D0%BD%D1%82%D0%B5%D0%B3%D1%80%D0%B0%D0%BB%D1%8C%D0%BD%D0%BE%D0%B3%D0%BE%20%D0%B8%D1%81%D1%87%D0%B8%D1%81%D0%BB%D0%B5%D0%BD%D0%B8%D1%8F.%20%D0%A2%D0%BE%D0%BC%203%20%281969%29.djvu Том 3]
 
  
['''З'''] Зорич В.А. - Математический анализ
+
=== Учебники ===
 +
 
 +
['''Ф'''] Фихтенгольц Г.М. - Курс дифференциального и интегрального исчисления. 1969
 +
 
 +
[https://drive.google.com/file/d/1Ozdf_LS_BSVIehkSJhTPdLR5S_9MJ7nO/view?usp=sharing Том 1] (пп. 1-262)
 +
[https://drive.google.com/file/d/1JVTuJ0EkrrYal3Fsau1UJiFK0A8F2mxX/view?usp=sharing Том 2] (пп. 263-542)
 +
[https://drive.google.com/file/d/1_4SU8H1Y-Jya8t-a4abNR-ba30fF_6Mn/view?usp=sharing Том 3] (пп. 543-762)
 +
 
 +
Классический учебник анализа, выдержавший многократные переиздания и вошедший в классику математической литературы (первое издание - 1949 г.). По широте охвата материала, количеству разобранных примеров, качеству и доступности объяснений - возможно, до сих пор непревзойден. Некоторая терминология устарела. Отсутствует современная теория интегрирования (дифференциальные формы и общая теорема Стокса).
 +
 
 +
['''З'''] Зорич В.А. - Математический анализ. 2019
 +
 
 +
[https://drive.google.com/file/d/1wBqHsVP3UpmyYQofon3Im1TQmRHHTB2R/view?usp=sharing Часть 1]
 +
[https://drive.google.com/file/d/1FxWvJSWedEf2lZ2jY8S7vkcWpLBmSr9d/view?usp=sharing Часть 2]
 +
 
 +
Замечательный современный учебник анализа. Теория рядов изложена, возможно, недостаточно подробно. В остальном - прекрасно дополняет учебник Фихтенгольца.
 +
 
 +
['''Шл'''] Шилов Г.Е. - Математический анализ. Функции нескольких вещественных переменных. 1972
 +
 
 +
[ Части 1-2]
 +
 
 +
Пользовался этой книгой при изложении теории меры Жордана и интеграла Римана. Книга в целом несколько выходит за рамки классического курса математического анализа.
 +
 
 +
['''МП'''] Макаров Б.М., Подкорытов А.Н. - Лекции по вещественному анализу. 2011
 +
 
 +
Математический анализ, основанный на теории меры и интеграла Лебега. Эта книга не имеет непосредственного отношения к нашему курсу.
 +
Но, учитывая желательность знакомства с теорией Лебега для некоторых разделов математики (ряды и интегралы Фурье, теория вероятностей, дифференциальные уравнения, функциональный анализ), рекомендую ее для продвинутых студентов. В книге много вкусностей (например: мера и размерность по Хаусдорфу, изопериметрическое неравенство). Также рекомендую задачник тех же авторов.
 +
 
 +
['''Ш'''] Шабат Б.В. - Введение в комплексный анализ. 1976
 +
 
 +
[https://drive.google.com/file/d/1BQLq9S34AA5mNv_-Mp7ApOeaQ7XLbMvY/view?usp=sharing Часть 1]
 +
 
 +
Современный учебник по комплексному анализу, написанный понятным языком и содержащий хорошие примеры. Нам понадобится только первая часть. Вторая часть - по многомерному комплексному анализу - совершенно выходит за рамки нашего курса.
 +
 
 +
=== Задачники ===
 +
 
 +
['''Д'''] Демидович Б.П. - Сборник задач и упражнений по математическому анализу. Любое издание
 +
 
 +
[https://drive.google.com/file/d/1aOWgN9OSky4WoIj6ezB7Ea5ETlzSKSMB/view?usp=sharing Например, это]
 +
 
 +
Классический задачник по математическому анализу. Если кто забыл о чем было в первой части курса анализа - вам сюда. Решайте задачи, повторяйте, тренируйтесь. Без уверенного владения матанализом-1 вы не освоите матанализ-2.
 +
 
 +
['''С'''] Виноградова И.А., Олехник С.Н., Садовничий В.А. - Математический анализ в задачах и упражнениях. Т.2,3. МЦНМО, 2018
 +
 
 +
Обычно пользуюсь этим задачником при планировании семинарских занятий.

Текущая версия на 16:06, 22 июня 2021

Преподаватели и учебные ассистенты

Группа 193 195 196 197 198 199 1910 1911
Лектор Маевский Е.В.
Семинарист Колесниче́нко Е.Ю. Днестрян А.И. Маевский Е.В. Маевский Е.В. Маевский Е.В. Колесниче́нко Е.Ю. Томашевский С.В. Томашевский С.В.
Ассистент Вологодский Михаил Субхангулов Султан Лямзин Алексей Паузнер Илья Сухарьков Александр Семерова Елена Цыганов Артем Сухарьков Александр

Приемные часы

Преподаватель понедельник вторник среда четверг пятница
Маевский Евгений Валерьевич почта: emaevskiy@mail.ru или телеграм: @emaevskiy
Колесниче́нко Елена Юрьевна
Днестрян Андрей Игоревич
Томашевский Сергей Владимирович

О курсе

Данный курс Математический анализ - 2 читается в 2020/2021 учебном году на основном потоке образовательной программы "Прикладная Математика и Информатика" Факультета компьютерных наук НИУ ВШЭ.

Курс состоит из следующих разделов: числовые и функциональные ряды, кратные интегралы, интегралы с параметром, ряды и преобразование Фурье, криволинейные и поверхностные интегралы, элементы комплексного анализа. Рассчитан на 2 семестра (4 модуля).

Лекции и коллоквиумы

О коллоквиумах

Описанный ниже формат коллоквиума действует начиная с 3-го модуля. Информация о формате коллоквиумов 1-го и 2-го модулей удалена, т.к. перестала быть актуальной.

Коллоквиум у нас - это письменный зачет по теории. Проводится на последнем семинаре модуля. Состоит из 3 теоретических заданий на 80 минут. Теоретические задания включают в себя вопросы на формулировку определений, утверждений и доказательства. Каждое задание оценивается по системе 0-1-2-3-4 без дробных баллов. Затем баллы суммируются и сумма умножается на 5/6.

О лекциях

Размещенные по ссылкам в оглавлении лекций дополнительные материалы (обычно содержащие полные доказательства и дополнительные примеры) необязательны для изучения, но могут быть небезынтересны для отдельных интересующихся студентов.

[Ф123] - это ссылка на пункт (в данном случае - 123) в учебнике Фихтенгольца издания 1969г. Нумерация пунктов в этом учебнике сплошная.

[З11.6] - это ссылка на главу 11, параграф 6 в учебнике Зорича. Нумерация глав - сплошная.

Модуль 1

Лекция 1.1 (01.09.20) Видео

Лекция 1.4 (22.09.20) Видео

Лекция 1.5 (29.09.20) Видео

Лекция 1.6 (06.10.20) Видео

Лекция 1.7 (13.10.20) Видео

Десерт

Коллоквиум 1

Вопросы

Коллоквиум состоится 17 октября (суббота) в 16:20 (Московское время). Материал лекции 13.10 в него не войдет. Коллоквиум пройдет в дистанционном формате для всех групп. Дополнительные инструкции смотрите на почте.

Модуль 2

Лекция 2.1 (27.10.20) Видео

Лекция 2.2 (03.11.20) Видео

Лекция 2.3 (10.11.20) Видео

Лекция 2.4 (17.11.20) Видео

Лекция 2.5 (24.11.20) Видео

Лекция 2.6 (01.12.20) Видео

Лекция 2.7 (08.12.20) Видео

Лекция 2.8 (15.12.20) Видео

Коллоквиум 2

Вопросы

Коллоквиум состоится 19.12 (суббота) в 11:10. Формат коллоквиума - дистанционный. Материал лекции 15.12 в него не войдет.

Модуль 3

Лекция 3.1 (12.01.21) Видео

Лекция 3.2 (19.01.21) Видео

Лекция 3.3 (26.01.21) Видео

Лекция 3.4 (02.02.21) Видео

Лекция 3.5 (09.02.21) Видео

Лекция 3.6 (16.02.21) Видео

Лекция 3.7 (02.03.21) Видео

Лекция 3.8 (09.03.21) Видео

Лекция 3.9 (16.03.21) Видео

Лекция 3.10 (23.03.21) Видео

Коллоквиум 3

Вопросы

Коллоквиум состоится на последнем семинаре модуля. Формат коллоквиума - письменный зачет по теории. Материал лекции 23.03 в него не войдет.

Модуль 4

Лекция 4.1 (06.04.21) Видео

Лекция 4.2 (13.04.21) Видео

Лекция 4.3 (20.04.21) Видео

Лекция 4.4 (27.04.21) Видео

Лекция 4.5 (11.05.21) Видео

Лекция 4.6 (18.05.21)

Лекция 4.7 (25.05.21)

3. Свойства голоморфных функций
3.1 Голоморфность композиции (в частности: суммы, произведения, частного)
3.2 Голоморфность обратной функции
3.3 Аналитичность голоморфной функции. Неравенство Коши (для коэффициентов ряда)
3.4 Бесконечная дифференцируемость и голоморфность аналитической функции

Лекция 4.8 (01.06.21)

3.5 Голоморфность и радиус сходимости
3.6 Теорема Лиувилля (о голоморфной и ограниченной на всей плоскости функции)
3.7 Теорема единственности аналитической функции
4. Однозначные особые точки и ряд Лорана
4.1 Однозначные особые точки
4.2 Устранимая особенность
4.3 Полюс
4.4 Существенная особенность

Лекция 4.9 (08.06.21)

4.5 Ряд Лорана
4.6 Единственность разложения Лорана
4.7 Главная часть ряда Лорана и классификация особых точек
5. Теория вычетов и ее приложения
5.1 Понятие вычета и теорема Коши о вычетах
5.2 Вычисление вычета
5.3 Пример применения вычетов для вычисления несобственного интеграла

Лекция 4.10 (15.06.21)

5.4 Применение вычетов к суммированию рядов
5.5 Примеры суммирования рядов
5.6 Разложение мероморфной функции в сумму простейших дробей
5.7 Разложения tg и ctg

Коллоквиум 4

Вопросы

Коллоквиум состоится на последнем семинаре модуля. Формат коллоквиума - письменный зачет по теории. Материал последней лекции модуля в него не войдет.

Семинары, домашние задания, самостоятельные работы и экзамены

О домашних заданиях

К каждому семинару выдается список задач. Некоторые задачи из этого списка рассматриваются на семинаре, остальное - ДЗ.

Задачи со звездочками предназначены для интересующихся студентов. Эти задачи не проверяются и никак не учитываются.

О самостоятельных работах

На следующем семинаре проводится самостоятельная работа по темам предыдущего семинара. Каждому студенту предлагается решить 1 задачу, аналогичную задачам из списка. Самостоятельная оценивается по системе 0-1-2.

Если студент пропустил самостоятельную по уважительной причине, то ему предлагается альтернатива. Либо он пишет работу в присутствии преподавателя в дополнительное время (и тогда работа оценивается по той же системе 0-1-2), либо он получает задание и пишет работу в свободном режиме дома (и тогда работа оценивается по системе 0-1).

Об экзаменах

На экзамен выносятся все темы, пройденные на семинарах, кроме тем последних семинаров модулей. Для подготовки рекомендуется решать задачи из соответствующих списков. Теоретический материал (в том числе теоретические задачи) в экзамены не входит.

Демонстрационные варианты экзамена показывают примерный уровень сложности заданий и их примерное распределение по темам. Не следует думать, что задания экзаменационных вариантов обязательно будут таких же типов.

Модуль 1

Семинар 1.1 Частичная сумма ряда. Необходимое условие сходимости. Задачи

Семинар 1.2 Положительные ряды. Задачи

Семинар 1.3 Знакопеременные ряды. Задачи

Семинар 1.4 Бесконечные произведения. Функциональные последовательности. Задачи

Семинар 1.5 Исследование сходимости функциональных рядов. Задачи

Семинар 1.6 Степенные ряды. Ряды Тейлора. Задачи

Семинар 1.7 Итоговое повторение по темам модуля. Задачи - факультативно

Модуль 2

Семинар 2.1 Мера Жордана. Теоретические задачи

Семинар 2.2 Кратный интеграл Римана. Теоретические задачи

Семинар 2.3 Вычисление кратного интеграла. Задачи

Семинар 2.4 Вычисление кратного интеграла. Задачи

Семинар 2.5 Замена переменных в кратном интеграле. Задачи

Семинар 2.6 Геометрические приложения кратного интеграла. Задачи

Семинар 2.7 Несобственный кратный интеграл. Задачи

Семинар 2.8 Итоговое повторение по темам модуля и семестра.

Экзамен 1

Экзамен состоится 24 декабря в 14:00. Формат: 6 вычислительных задач на 90 минут. По окончании листы надо сфотографировать и выслать преподавателю, ведущему семинары, с копией лектору (тема письма: группа_Фамилия_Имя, например: 190_Маевский_Евгений). Проверка: каждое задание оценивается по системе 0-1-2. Показ работ: по согласованию с семинаристом.

Тематическое распределение заданий:

  1. Исследование числового ряда на сходимость или абсолютную сходимость
  2. Исследование функционального ряда на равномерную сходимость
  3. Вычисление области сходимости степенного ряда
  4. Замена переменных в кратном интеграле
  5. Вычисление объема тела или площади поверхности
  6. Исследование сходимости несобственного кратного интеграла

Демо-варианты экзамена

Модуль 3

Семинар 3.1 Собственный интеграл, зависящий от параметра. Задачи

Семинар 3.2 Равномерная сходимость системы функций. Задачи

Семинар 3.3 Равномерная сходимость несобственного интеграла. Задачи

Семинар 3.4 Предельный переход под знаком несобственного интеграла. Задачи

Семинар 3.5 Дифференцирование под знаком несобственного интеграла. Задачи

Семинар 3.6 Эйлеровы интегралы. Задачи

Семинар 3.7 Ряды Фурье. Задачи

Семинар 3.8 Ряды Фурье. Задачи

Семинар 3.9 Преобразование Фурье. Задачи

Семинар 3.10 Коллоквиум-3

Модуль 4

Семинар 4.1 Криволинейный интеграл I-го рода. Задачи

Семинар 4.2 Поверхностный интеграл I-го рода. Задачи

Семинар 4.3 Криволинейный интеграл II-го рода. Формула Грина. Задачи

Семинар 4.4 Поверхностный интеграл II-го рода. Формулы Остроградского - Гаусса и Стокса. Задачи

Семинар 4.5 Введение в комплексный анализ. Задачи

Семинар 4.6 Непрерывность и голоморфность. Задачи

Семинар 4.7 Конформные отображения. Задачи

Семинар 4.8 Однозначные особые точки и ряд Лорана. Задачи

Семинар 4.9 Теория вычетов и ее приложения. Задачи

Семинар 4.10 Коллоквиум-4

Экзамен 2

Экзамен состоится 24 июня в 15:00. Формат: 6 вычислительных задач на 180 минут. По окончании листы надо сфотографировать и выслать преподавателю, ведущему семинары, с копией лектору (тема письма: группа_Фамилия_Имя, например: 190_Маевский_Евгений). Проверка: каждое задание оценивается по системе 0-1-2 балла. Баллы за задачи суммируются и срезаются 10-ю баллами взятием min(10, summa). Показ работ: по согласованию с семинаристом.

Тематическое распределение заданий:

  1. Интеграл, зависящий от параметра (вычисление интеграла с помощью перехода к пределу или дифференцирования под знаком интеграла)
  2. Ряды Фурье (разложение функции в тригонометрический ряд Фурье)
  3. Криволинейный интеграл (вычисление криволинейного интеграла I-го или II-го рода, без формул Грина и Стокса)
  4. Поверхностный интеграл (вычисление поверхностного интеграла I-го или II-го рода, без формулы Остроградского - Гаусса)
  5. Элементы комплексного анализа (уравнения Коши - Римана, дробно-линейное отображение, разложение в ряд Лорана, вычеты и их приложения)
  6. Задача по материалу I-го семестра (аналогичная одной из задач Экзамена-1)

Демо-вариантов не будет, поскольку их наличие в I-м семестре было истолковано неверно.

Ведомость с оценками

193 195 196 197 198 199 1910 1911

Формы контроля и оценивание

В течение года установлены следующие формы контроля:

  • 2 письменных экзамена (e1, e2 - 10-балльные оценки за экзамены);
  • 4 коллоквиума (k1, k2, k3, k4 - 10-балльные оценки за коллоквиумы);
  • некоторое число самостоятельных работ (s1, s2, s3, s4 - средние оценки за самостоятельные работы по модулям, приведенные к 10-балльной шкале).

Все оценки считаются и учитываются без округлений. Округление производится по общепринятому правилу: round(x)=floor(x+0.5) непосредственно перед выставлением оценок в официальные бумаги.

Итоговая оценка 1-го семестра:

i1=0.125n1+0.5e1, где n1=s1+s2+k1+k2

Если n1≥38, то студент освобождается от экзамена и выставляется автоматом e1=10.

Если 38>n1≥32, то студент (по умолчанию) освобождается от экзамена и выставляется автоматом e1=0.25n1 (без округления). Если все же студент желает сдавать экзамен, то сообщить об этом следует не позднее, чем за 3 дня до экзамена.

Итоговая оценка 2-го семестра:

i2=0.125n2+0.5e2, где n2=s3+s4+k3+k4

Если n2≥38, то студент освобождается от экзамена и выставляется автоматом e2=10.

Если 38>n2≥32, то студент (по умолчанию) освобождается от экзамена и выставляется автоматом e2=0.25n2 (без округления). Если все же студент желает сдавать экзамен, то сообщить об этом следует не позднее, чем за 3 дня до экзамена.

Итоговая оценка за курс:

i=0.5(i1 + i2)

(округляется непосредственно перед выставлением в итоговую ведомость)

Блокирующих форм контроля нет.

Список рекомендуемой литературы

Учебники

[Ф] Фихтенгольц Г.М. - Курс дифференциального и интегрального исчисления. 1969

Том 1 (пп. 1-262) Том 2 (пп. 263-542) Том 3 (пп. 543-762)

Классический учебник анализа, выдержавший многократные переиздания и вошедший в классику математической литературы (первое издание - 1949 г.). По широте охвата материала, количеству разобранных примеров, качеству и доступности объяснений - возможно, до сих пор непревзойден. Некоторая терминология устарела. Отсутствует современная теория интегрирования (дифференциальные формы и общая теорема Стокса).

[З] Зорич В.А. - Математический анализ. 2019

Часть 1 Часть 2

Замечательный современный учебник анализа. Теория рядов изложена, возможно, недостаточно подробно. В остальном - прекрасно дополняет учебник Фихтенгольца.

[Шл] Шилов Г.Е. - Математический анализ. Функции нескольких вещественных переменных. 1972

[ Части 1-2]

Пользовался этой книгой при изложении теории меры Жордана и интеграла Римана. Книга в целом несколько выходит за рамки классического курса математического анализа.

[МП] Макаров Б.М., Подкорытов А.Н. - Лекции по вещественному анализу. 2011

Математический анализ, основанный на теории меры и интеграла Лебега. Эта книга не имеет непосредственного отношения к нашему курсу. Но, учитывая желательность знакомства с теорией Лебега для некоторых разделов математики (ряды и интегралы Фурье, теория вероятностей, дифференциальные уравнения, функциональный анализ), рекомендую ее для продвинутых студентов. В книге много вкусностей (например: мера и размерность по Хаусдорфу, изопериметрическое неравенство). Также рекомендую задачник тех же авторов.

[Ш] Шабат Б.В. - Введение в комплексный анализ. 1976

Часть 1

Современный учебник по комплексному анализу, написанный понятным языком и содержащий хорошие примеры. Нам понадобится только первая часть. Вторая часть - по многомерному комплексному анализу - совершенно выходит за рамки нашего курса.

Задачники

[Д] Демидович Б.П. - Сборник задач и упражнений по математическому анализу. Любое издание

Например, это

Классический задачник по математическому анализу. Если кто забыл о чем было в первой части курса анализа - вам сюда. Решайте задачи, повторяйте, тренируйтесь. Без уверенного владения матанализом-1 вы не освоите матанализ-2.

[С] Виноградова И.А., Олехник С.Н., Садовничий В.А. - Математический анализ в задачах и упражнениях. Т.2,3. МЦНМО, 2018

Обычно пользуюсь этим задачником при планировании семинарских занятий.