Statistics DSBA 2019/2020 — различия между версиями

Материал из Wiki - Факультет компьютерных наук
Перейти к: навигация, поиск
 
(не показана одна промежуточная версия этого же участника)
Строка 16: Строка 16:
 
|}
 
|}
  
== Office hours ==
+
Questions about homework assignments can be addressed to Tagir (tg @Kuskarov).
 
+
{| class="wikitable"
+
|-
+
! !! Teacher/Assistant !! Monday !! Tuesday !! Wednesday !! Thursday !! Friday !! Saturday
+
|-
+
| <center>1</center> || Peter Lukianchenko || ||  ||  || || ||
+
|-
+
| <center>2</center> || Anastasia Tabisheva || ||  ||  || || ||
+
|-
+
| <center>3</center> || Igor Fedorov || || || ||  || ||
+
|-
+
| <center>4</center> || Tagir Kuskarov || || || ||  || ||
+
|}
+
 
+
 
== Communication ==
 
== Communication ==
  
Строка 39: Строка 25:
 
= Lecture notes =
 
= Lecture notes =
  
{| class="wikitable"
+
 
|-
+
'''[https://www.dropbox.com/s/7k3zzy2dk3nvr0b/DSBA1920_Lect1.pdf?dl=0 Lecture 1]''' (4.09.2019). Welcome to Statistics!
! !! Date of lecture !! Themes !! Link
+
 
|-
+
'''[https://www.dropbox.com/s/8wdr55jisj0r9tn/DSBA1920_Lect2.pdf?dl=0 Lecture 2]''' (11.09.2019). Axioms of probability. Basics of combinatorics.
| <center>1</center> || 04/09/2019 || || [https://www.dropbox.com/s/7k3zzy2dk3nvr0b/DSBA1920_Lect1.pdf?dl=0 link]
+
 
|-
+
'''[https://www.dropbox.com/s/9kmgmtv5medbjjf/DSBA1920_Lect3.pdf?dl=0 Lecture 3]''' (18.09.2019). Random variable. Discrete pdf. Expectation and variance. Bernoulli distribution. Bayes rule.
| <center>2</center> || 11/09/2019 || || [https://www.dropbox.com/s/8wdr55jisj0r9tn/DSBA1920_Lect2.pdf?dl=0 link]
+
 
|-
+
'''[https://www.dropbox.com/s/p0mlfstdyuniwm4/DSBA1920_Lect4.pdf?dl=0 Lecture 4]''' (25.09.2019). Joint discrete distribution. Conditional probability. Covariance. Correlation.
| <center>3</center> || 18/09/2019 || || [https://www.dropbox.com/s/9kmgmtv5medbjjf/DSBA1920_Lect3.pdf?dl=0 link]
+
 
|-
+
'''[https://www.dropbox.com/s/afjgt4yby7ghhyg/DSBA1920_Lect5.pdf?dl=0 Lecture 5]''' (2.10.2019). Continuous distribution. Standard normal distribution. Exponential distribution. Uniform distribution
| <center>4</center> || 25/09/2019 || || [https://www.dropbox.com/s/p0mlfstdyuniwm4/DSBA1920_Lect4.pdf?dl=0 link]
+
 
|-
+
'''[https://www.dropbox.com/s/36jqimz0nd9b19t/DSBA1920_Lect6.pdf?dl=0 Lecture 6]''' (9.10.2019). Normal distribution. Standard normal distribution. Joint distribution. Uniform distribution
| <center>5</center> || 2/10/2019 || Continuous distribution. Standard normal distribution. Exponential distribution. Uniform distribution || [https://www.dropbox.com/s/afjgt4yby7ghhyg/DSBA1920_Lect5.pdf?dl=0 link]
+
 
|-
+
'''[https://www.dropbox.com/s/krcfubc4vka0bl7/DSBA1920_Lect7.pdf?dl=0 Lecture 7]''' (16.10.2019). Normal distribution. Standard normal distribution. Joint distribution. Uniform distribution.
| <center>6</center> || 9/10/2019 ||  || [https://www.dropbox.com/s/36jqimz0nd9b19t/DSBA1920_Lect6.pdf?dl=0 link]
+
 
|-
+
'''[https://www.dropbox.com/s/l0aj6dj74yr6a2e/DSBA1920_Lect8.pdf?dl=0 Lecture 8]''' (06.11.2019). Data representation. Exponential, Poisson, and Uniform
| <center>7</center> || 16/09/2019 || Normal distribution. Standard normal distribution. Joint distribution. Uniform distribution || [https://www.dropbox.com/s/krcfubc4vka0bl7/DSBA1920_Lect7.pdf?dl=0 link]
+
distributions. Continuity correction.
|}
+
 
 +
'''[https://www.dropbox.com/s/oyj9pf5e7onp0j7/DSBA1920_Lect9.pdf?dl=0 Lecture 9]''' (13.11.2019). Law of large numbers. Distribution of a function of random variable. Distribution of sample proportion. Chi-squared distribution.
 +
 
 +
'''[https://www.dropbox.com/s/b0qiaf6q12h79hb/DSBA1920_Lect10.pdf?dl=0 Lecture 10]''' (18.11.2019). Student distribution. Chi-squared distribution.
 +
 
 +
'''[https://www.dropbox.com/s/27s8dyghfllm66r/DSBA1920_Lect11.pdf?dl=0 Lecture 11]''' (20.11.2019). Sampling. Sample mean. Fisher lemma. Point estimation. F-distribution.
 +
 
 +
'''[https://www.dropbox.com/s/qdepsysny726boe/DSBA1920_Lect12.pdf?dl=0 Lecture 12]''' (27.11.2019). Interval estimation. Confidence interval.
 +
 
 +
'''[https://www.dropbox.com/s/h5949riwr3264fm/DSBA1920_Lect13.pdf?dl=0 Lecture 13]''' (4.12.2019). Confidence interval.
 +
 
 +
Too lazy to post links anymore... Look [https://www.dropbox.com/sh/3kxjhhm33x14jkq/AACSuvODHmMXtSrSEpwyvMNoa?dl=0 here] to find other lectures.
  
 
= Grading system =
 
= Grading system =
  
Fall = 0.3 * FallMock + 0.6 * WinterExam + 0.1 * FallHomework
+
Fall = 0.3 * FallMock + 0.6 * WinterExam + 0.05 * FallHomework + 0.05 * FallQuizzes
  
Spring = 0.15 * SpringMock + 0.4 * Final exam + 0.4 * UoL + 0.05 * SpringHomework  
+
Spring = 0.15 * SpringMock + 0.15 * Final exam + 0.65 * UoL + 0.025 * SpringHomework + 0.025 * SpringQuizes
  
 
Final = 0.4 * Fall + 0.6 * Spring
 
Final = 0.4 * Fall + 0.6 * Spring
Строка 79: Строка 76:
 
= Results =
 
= Results =
  
{| class="wikitable"
+
== Homeworks and Quizes ==
|-
+
Fall grades: '''[https://docs.google.com/spreadsheets/d/1KdPJfBwhqji04Lmhh3th6fNc1f_xxSqg5bzbKsN9wQo/edit#gid=0 Link]'''
! 181 !! 182
+
 
|}
+
Spring grades: '''[https://docs.google.com/spreadsheets/d/1xW1fK1IAQGyLc0y64Z18LvS51OPnEXiP6JAdl1t2omI/edit#gid=0 Link]'''
 +
 
 +
== Fall Exam ==
 +
 
 +
Results of Fall Exam in group 181: '''[https://www.dropbox.com/s/lvlkc8yhqfbyb3o/Grades_Oct2019_181.pdf?dl=0 Link]'''
 +
 
 +
Results of Fall Exam in group 182: '''[https://www.dropbox.com/s/xjfgjvccxiqysq9/Grades_Oct2019_182.pdf?dl=0 Link]'''
 +
 
 +
Free response part solutions are available '''[https://www.dropbox.com/s/25nrjrgntf6zj1v/FR_solutions.pdf?dl=0 here]'''.
 +
 
 +
== Spring Midterm ==
 +
 
 +
Results: '''[https://docs.google.com/spreadsheets/d/1op3fbexLazdoUPRSMr71Gpy_xBOHjZrIgWrHb9UGLy8/edit#gid=2080905435 Link]'''
 +
 
 +
Free response solutions and criteria: '''[https://www.dropbox.com/s/cz1md7khlpavezc/fr_solutions.pdf?dl=0 Link]'''
  
 
= Homework assignments =
 
= Homework assignments =
Строка 94: Строка 105:
 
== Problems ==
 
== Problems ==
  
{| class="wikitable"
+
'''[https://www.dropbox.com/s/z9q57bkb8o3cm6t/hw2.pdf?dl=0 Homework 2]''' until 10:30, 25.09.2019
|-
+
 
! !! Link !! Deadline
+
'''[https://www.dropbox.com/s/2iw372614hcfa1t/hw3.pdf?dl=0 Homework 3]''' until 10:30, 9.10.2019
|-
+
 
| <center>1</center> || link || ?
+
'''[https://www.dropbox.com/s/kml62ahz0gk1elv/hw4.pdf?dl=0 Homework 4]''' until 10:30, 16.10.2019
|-
+
 
| <center>2</center> ||  [https://www.dropbox.com/s/z9q57bkb8o3cm6t/hw2.pdf?dl=0 link] || 10:30, 25/09/2019
+
'''[https://www.dropbox.com/s/9t85bqwkv971mo8/hw5.pdf?dl=0 Homework 5]''' until 10:30, 13.11.2019
|}
+
 
 +
'''[https://www.dropbox.com/s/x78w28os9a7vb7q/hw6.pdf?dl=0 Homework 6]''' until 12:00, 19.11.2019
 +
 
 +
'''[https://www.dropbox.com/s/v32csk9f8765mzf/hw7.pdf?dl=0 Homework 7]''' until 15:00, 29.11.2019
 +
 
 +
'''[https://www.dropbox.com/s/rbh70iltd9pfdm7/hw8.pdf?dl=0 Homework 8]''' until 12:00, 13.12.2019
 +
 
 +
Other HWs can be found in the telegram channel or [https://www.dropbox.com/sh/402hu80r27opsom/AACHjOhUBJ36SoiJZb3MMdXLa?dl=0 here].

Текущая версия на 00:45, 8 июня 2020

About

This page contains information about Statistics course at DSBA.

Actual syllabus can be found here.

Teachers and assistants

Group БПАД181 БПАД182
Teacher Peter Lukianchenko
Assistant Anastasia Tabisheva Igor Fedorov

Questions about homework assignments can be addressed to Tagir (tg @Kuskarov).

Communication

We use Telegram messenger to share files.

Link to course channel: [1]

Lecture notes

Lecture 1 (4.09.2019). Welcome to Statistics!

Lecture 2 (11.09.2019). Axioms of probability. Basics of combinatorics.

Lecture 3 (18.09.2019). Random variable. Discrete pdf. Expectation and variance. Bernoulli distribution. Bayes rule.

Lecture 4 (25.09.2019). Joint discrete distribution. Conditional probability. Covariance. Correlation.

Lecture 5 (2.10.2019). Continuous distribution. Standard normal distribution. Exponential distribution. Uniform distribution

Lecture 6 (9.10.2019). Normal distribution. Standard normal distribution. Joint distribution. Uniform distribution

Lecture 7 (16.10.2019). Normal distribution. Standard normal distribution. Joint distribution. Uniform distribution.

Lecture 8 (06.11.2019). Data representation. Exponential, Poisson, and Uniform distributions. Continuity correction.

Lecture 9 (13.11.2019). Law of large numbers. Distribution of a function of random variable. Distribution of sample proportion. Chi-squared distribution.

Lecture 10 (18.11.2019). Student distribution. Chi-squared distribution.

Lecture 11 (20.11.2019). Sampling. Sample mean. Fisher lemma. Point estimation. F-distribution.

Lecture 12 (27.11.2019). Interval estimation. Confidence interval.

Lecture 13 (4.12.2019). Confidence interval.

Too lazy to post links anymore... Look here to find other lectures.

Grading system

Fall = 0.3 * FallMock + 0.6 * WinterExam + 0.05 * FallHomework + 0.05 * FallQuizzes

Spring = 0.15 * SpringMock + 0.15 * Final exam + 0.65 * UoL + 0.025 * SpringHomework + 0.025 * SpringQuizes

Final = 0.4 * Fall + 0.6 * Spring

All marks are out of 100 points.

Examination types

  • Home assignments and Quizzes
  • FallMock (October Midterm)
  • WinterExam (December Exam)
  • SpringMock (spring)
  • University of London exams (May Exam)
  • FinalExam (June Exam).

Results

Homeworks and Quizes

Fall grades: Link

Spring grades: Link

Fall Exam

Results of Fall Exam in group 181: Link

Results of Fall Exam in group 182: Link

Free response part solutions are available here.

Spring Midterm

Results: Link

Free response solutions and criteria: Link

Homework assignments

Rules

  • Homework submitted after the general deadline will not be accepted.
  • The common mistakes made in the homework will be discussed during the seminars.
  • Any fact of cheating or breach of academic integrity will result in receiving a "0" (zero) for this work.

Problems

Homework 2 until 10:30, 25.09.2019

Homework 3 until 10:30, 9.10.2019

Homework 4 until 10:30, 16.10.2019

Homework 5 until 10:30, 13.11.2019

Homework 6 until 12:00, 19.11.2019

Homework 7 until 15:00, 29.11.2019

Homework 8 until 12:00, 13.12.2019

Other HWs can be found in the telegram channel or here.