Statistics DSBA 2019/2020 — различия между версиями
(Add links) |
TKuskarov (обсуждение | вклад) |
||
(не показаны 24 промежуточные версии 2 участников) | |||
Строка 3: | Строка 3: | ||
This page contains information about Statistics course at DSBA. | This page contains information about Statistics course at DSBA. | ||
− | Actual syllabus can be found [https://www. | + | Actual syllabus can be found [https://www.dropbox.com/s/1rxg7910zxakznv/Syllabus%20for%20Statistics%20CS%20HSEv2.pdf?dl=0 here]. |
= Teachers and assistants = | = Teachers and assistants = | ||
Строка 14: | Строка 14: | ||
|- | |- | ||
|| Assistant || Anastasia Tabisheva || Igor Fedorov | || Assistant || Anastasia Tabisheva || Igor Fedorov | ||
− | |||
− | |||
|} | |} | ||
− | + | Questions about homework assignments can be addressed to Tagir (tg @Kuskarov). | |
− | + | == Communication == | |
− | == | + | |
We use Telegram messenger to share files. | We use Telegram messenger to share files. | ||
Строка 26: | Строка 23: | ||
Link to course channel: [https://t.me/stathard] | Link to course channel: [https://t.me/stathard] | ||
− | = | + | = Lecture notes = |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | = Examination types = | + | '''[https://www.dropbox.com/s/7k3zzy2dk3nvr0b/DSBA1920_Lect1.pdf?dl=0 Lecture 1]''' (4.09.2019). Welcome to Statistics! |
+ | |||
+ | '''[https://www.dropbox.com/s/8wdr55jisj0r9tn/DSBA1920_Lect2.pdf?dl=0 Lecture 2]''' (11.09.2019). Axioms of probability. Basics of combinatorics. | ||
+ | |||
+ | '''[https://www.dropbox.com/s/9kmgmtv5medbjjf/DSBA1920_Lect3.pdf?dl=0 Lecture 3]''' (18.09.2019). Random variable. Discrete pdf. Expectation and variance. Bernoulli distribution. Bayes rule. | ||
+ | |||
+ | '''[https://www.dropbox.com/s/p0mlfstdyuniwm4/DSBA1920_Lect4.pdf?dl=0 Lecture 4]''' (25.09.2019). Joint discrete distribution. Conditional probability. Covariance. Correlation. | ||
+ | |||
+ | '''[https://www.dropbox.com/s/afjgt4yby7ghhyg/DSBA1920_Lect5.pdf?dl=0 Lecture 5]''' (2.10.2019). Continuous distribution. Standard normal distribution. Exponential distribution. Uniform distribution | ||
+ | |||
+ | '''[https://www.dropbox.com/s/36jqimz0nd9b19t/DSBA1920_Lect6.pdf?dl=0 Lecture 6]''' (9.10.2019). Normal distribution. Standard normal distribution. Joint distribution. Uniform distribution | ||
+ | |||
+ | '''[https://www.dropbox.com/s/krcfubc4vka0bl7/DSBA1920_Lect7.pdf?dl=0 Lecture 7]''' (16.10.2019). Normal distribution. Standard normal distribution. Joint distribution. Uniform distribution. | ||
+ | |||
+ | '''[https://www.dropbox.com/s/l0aj6dj74yr6a2e/DSBA1920_Lect8.pdf?dl=0 Lecture 8]''' (06.11.2019). Data representation. Exponential, Poisson, and Uniform | ||
+ | distributions. Continuity correction. | ||
+ | |||
+ | '''[https://www.dropbox.com/s/oyj9pf5e7onp0j7/DSBA1920_Lect9.pdf?dl=0 Lecture 9]''' (13.11.2019). Law of large numbers. Distribution of a function of random variable. Distribution of sample proportion. Chi-squared distribution. | ||
+ | |||
+ | '''[https://www.dropbox.com/s/b0qiaf6q12h79hb/DSBA1920_Lect10.pdf?dl=0 Lecture 10]''' (18.11.2019). Student distribution. Chi-squared distribution. | ||
+ | |||
+ | '''[https://www.dropbox.com/s/27s8dyghfllm66r/DSBA1920_Lect11.pdf?dl=0 Lecture 11]''' (20.11.2019). Sampling. Sample mean. Fisher lemma. Point estimation. F-distribution. | ||
+ | |||
+ | '''[https://www.dropbox.com/s/qdepsysny726boe/DSBA1920_Lect12.pdf?dl=0 Lecture 12]''' (27.11.2019). Interval estimation. Confidence interval. | ||
+ | |||
+ | '''[https://www.dropbox.com/s/h5949riwr3264fm/DSBA1920_Lect13.pdf?dl=0 Lecture 13]''' (4.12.2019). Confidence interval. | ||
+ | |||
+ | Too lazy to post links anymore... Look [https://www.dropbox.com/sh/3kxjhhm33x14jkq/AACSuvODHmMXtSrSEpwyvMNoa?dl=0 here] to find other lectures. | ||
+ | |||
+ | = Grading system = | ||
+ | |||
+ | Fall = 0.3 * FallMock + 0.6 * WinterExam + 0.05 * FallHomework + 0.05 * FallQuizzes | ||
+ | |||
+ | Spring = 0.15 * SpringMock + 0.15 * Final exam + 0.65 * UoL + 0.025 * SpringHomework + 0.025 * SpringQuizes | ||
+ | |||
+ | Final = 0.4 * Fall + 0.6 * Spring | ||
+ | |||
+ | All marks are out of 100 points. | ||
+ | |||
+ | == Examination types == | ||
*Home assignments and Quizzes | *Home assignments and Quizzes | ||
Строка 48: | Строка 72: | ||
*SpringMock (spring) | *SpringMock (spring) | ||
*University of London exams (May Exam) | *University of London exams (May Exam) | ||
− | *FinalExam (June Exam). | + | *FinalExam (June Exam). |
− | = | + | = Results = |
− | + | == Homeworks and Quizes == | |
+ | Fall grades: '''[https://docs.google.com/spreadsheets/d/1KdPJfBwhqji04Lmhh3th6fNc1f_xxSqg5bzbKsN9wQo/edit#gid=0 Link]''' | ||
− | Spring | + | Spring grades: '''[https://docs.google.com/spreadsheets/d/1xW1fK1IAQGyLc0y64Z18LvS51OPnEXiP6JAdl1t2omI/edit#gid=0 Link]''' |
− | + | == Fall Exam == | |
− | + | Results of Fall Exam in group 181: '''[https://www.dropbox.com/s/lvlkc8yhqfbyb3o/Grades_Oct2019_181.pdf?dl=0 Link]''' | |
− | + | Results of Fall Exam in group 182: '''[https://www.dropbox.com/s/xjfgjvccxiqysq9/Grades_Oct2019_182.pdf?dl=0 Link]''' | |
− | + | Free response part solutions are available '''[https://www.dropbox.com/s/25nrjrgntf6zj1v/FR_solutions.pdf?dl=0 here]'''. | |
− | + | ||
− | + | ||
− | + | ||
− | = | + | == Spring Midterm == |
− | + | Results: '''[https://docs.google.com/spreadsheets/d/1op3fbexLazdoUPRSMr71Gpy_xBOHjZrIgWrHb9UGLy8/edit#gid=2080905435 Link]''' | |
− | + | ||
− | + | Free response solutions and criteria: '''[https://www.dropbox.com/s/cz1md7khlpavezc/fr_solutions.pdf?dl=0 Link]''' | |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
= Homework assignments = | = Homework assignments = | ||
Строка 90: | Строка 105: | ||
== Problems == | == Problems == | ||
− | + | '''[https://www.dropbox.com/s/z9q57bkb8o3cm6t/hw2.pdf?dl=0 Homework 2]''' until 10:30, 25.09.2019 | |
− | + | ||
− | + | '''[https://www.dropbox.com/s/2iw372614hcfa1t/hw3.pdf?dl=0 Homework 3]''' until 10:30, 9.10.2019 | |
− | + | ||
− | + | '''[https://www.dropbox.com/s/kml62ahz0gk1elv/hw4.pdf?dl=0 Homework 4]''' until 10:30, 16.10.2019 | |
− | + | ||
− | + | '''[https://www.dropbox.com/s/9t85bqwkv971mo8/hw5.pdf?dl=0 Homework 5]''' until 10:30, 13.11.2019 | |
− | + | ||
+ | '''[https://www.dropbox.com/s/x78w28os9a7vb7q/hw6.pdf?dl=0 Homework 6]''' until 12:00, 19.11.2019 | ||
+ | |||
+ | '''[https://www.dropbox.com/s/v32csk9f8765mzf/hw7.pdf?dl=0 Homework 7]''' until 15:00, 29.11.2019 | ||
+ | |||
+ | '''[https://www.dropbox.com/s/rbh70iltd9pfdm7/hw8.pdf?dl=0 Homework 8]''' until 12:00, 13.12.2019 | ||
+ | |||
+ | Other HWs can be found in the telegram channel or [https://www.dropbox.com/sh/402hu80r27opsom/AACHjOhUBJ36SoiJZb3MMdXLa?dl=0 here]. |
Текущая версия на 00:45, 8 июня 2020
Содержание
About
This page contains information about Statistics course at DSBA.
Actual syllabus can be found here.
Teachers and assistants
Group | БПАД181 | БПАД182 | |
---|---|---|---|
Teacher | Peter Lukianchenko | ||
Assistant | Anastasia Tabisheva | Igor Fedorov |
Questions about homework assignments can be addressed to Tagir (tg @Kuskarov).
Communication
We use Telegram messenger to share files.
Link to course channel: [1]
Lecture notes
Lecture 1 (4.09.2019). Welcome to Statistics!
Lecture 2 (11.09.2019). Axioms of probability. Basics of combinatorics.
Lecture 3 (18.09.2019). Random variable. Discrete pdf. Expectation and variance. Bernoulli distribution. Bayes rule.
Lecture 4 (25.09.2019). Joint discrete distribution. Conditional probability. Covariance. Correlation.
Lecture 5 (2.10.2019). Continuous distribution. Standard normal distribution. Exponential distribution. Uniform distribution
Lecture 6 (9.10.2019). Normal distribution. Standard normal distribution. Joint distribution. Uniform distribution
Lecture 7 (16.10.2019). Normal distribution. Standard normal distribution. Joint distribution. Uniform distribution.
Lecture 8 (06.11.2019). Data representation. Exponential, Poisson, and Uniform distributions. Continuity correction.
Lecture 9 (13.11.2019). Law of large numbers. Distribution of a function of random variable. Distribution of sample proportion. Chi-squared distribution.
Lecture 10 (18.11.2019). Student distribution. Chi-squared distribution.
Lecture 11 (20.11.2019). Sampling. Sample mean. Fisher lemma. Point estimation. F-distribution.
Lecture 12 (27.11.2019). Interval estimation. Confidence interval.
Lecture 13 (4.12.2019). Confidence interval.
Too lazy to post links anymore... Look here to find other lectures.
Grading system
Fall = 0.3 * FallMock + 0.6 * WinterExam + 0.05 * FallHomework + 0.05 * FallQuizzes
Spring = 0.15 * SpringMock + 0.15 * Final exam + 0.65 * UoL + 0.025 * SpringHomework + 0.025 * SpringQuizes
Final = 0.4 * Fall + 0.6 * Spring
All marks are out of 100 points.
Examination types
- Home assignments and Quizzes
- FallMock (October Midterm)
- WinterExam (December Exam)
- SpringMock (spring)
- University of London exams (May Exam)
- FinalExam (June Exam).
Results
Homeworks and Quizes
Fall grades: Link
Spring grades: Link
Fall Exam
Results of Fall Exam in group 181: Link
Results of Fall Exam in group 182: Link
Free response part solutions are available here.
Spring Midterm
Results: Link
Free response solutions and criteria: Link
Homework assignments
Rules
- Homework submitted after the general deadline will not be accepted.
- The common mistakes made in the homework will be discussed during the seminars.
- Any fact of cheating or breach of academic integrity will result in receiving a "0" (zero) for this work.
Problems
Homework 2 until 10:30, 25.09.2019
Homework 3 until 10:30, 9.10.2019
Homework 4 until 10:30, 16.10.2019
Homework 5 until 10:30, 13.11.2019
Homework 6 until 12:00, 19.11.2019
Homework 7 until 15:00, 29.11.2019
Homework 8 until 12:00, 13.12.2019
Other HWs can be found in the telegram channel or here.