Машинное обучение в экономике бакалавриат 2024-2025 — различия между версиями

Материал из Wiki - Факультет компьютерных наук
Перейти к: навигация, поиск
(Список литературы)
(Список литературы)
Строка 82: Строка 82:
 
= Список литературы =
 
= Список литературы =
  
# '''FOML''' -- [https://www.amazon.com/Fundamentals-Machine-Learning-Predictive-Analytics/dp/0262029448 Fundamentals of machine learning for predictive data analytics. John D. Kelleher, Brian Mac Namee, Aoife D'Arcy.] '''Низкая сложность'''
+
# '''FOML''' - [https://www.amazon.com/Fundamentals-Machine-Learning-Predictive-Analytics/dp/0262029448 Fundamentals of machine learning for predictive data analytics. John D. Kelleher, Brian Mac Namee, Aoife D'Arcy.] '''Низкая сложность'''
# '''HBE''' -- [https://www.amazon.com/Econometrics-Bruce-Hansen/dp/0691235899 Econometrics. Hansen B.] '''Средняя сложность'''
+
# '''HBE''' - [https://www.amazon.com/Econometrics-Bruce-Hansen/dp/0691235899 Econometrics. Hansen B.] '''Средняя сложность'''
# '''CMLE''' -- [https://causalml-book.org Applied Causal Inference Powered by ML and AI. V. Chernozhukov, C. Hansen, N. Kallus, M. Spindler, V. Syrgkanis] '''Средняя сложность'''
+
# '''CMLE''' - [https://causalml-book.org Applied Causal Inference Powered by ML and AI. V. Chernozhukov, C. Hansen, N. Kallus, M. Spindler, V. Syrgkanis] '''Средняя сложность'''
# '''MLPP''' -- [https://www.amazon.com/Machine-Learning-Probabilistic-Perspective-Computation/dp/0262018020 Machine learning a probabilistic perspective. Kevin P. Murphy.] '''Высокая сложность'''
+
# '''MLPP''' - [https://www.amazon.com/Machine-Learning-Probabilistic-Perspective-Computation/dp/0262018020 Machine learning a probabilistic perspective. Kevin P. Murphy.] '''Высокая сложность'''

Версия 18:52, 2 апреля 2025

Материалы для повторения

Викистранички курсов по теории вероятностей и математической статистике:

Видео про применение python в математической статистике:

Информация о курсе

Оценка = 0.01 * ДЗ1 + 0.29 * ДЗ2 + 0.7 * Экзамен

Домашнее задание

Домашнее задание 1

Дедлайн: 18 мая

Необходимо внести данные группы (до трех человек включительно), в которой будет выполняться второе домашнее задание, в таблицу.

Домашнее задание 2

Дедлайн: 1 июня

Информация об оформлении и формате сдачи домашней работы указана в тексте задания (появится позже).

Консультация о генерации данных 2023-2024:

Экзамен

Условие экзамена

Экзамены прошлых лет

Пример экзамена с решением 2023-2024

Экзамен 2023-2024 с решениями

Экзамен 2024-2025 с решениями, магистратура

Консультации

Консультация на лекции 2023-2024

Консультация на семинаре 2023-2024

Неделя 0. Введение в машинное обучение

Слайды лекции

Неделя 1. Байесовские сети

Основные материалы

Слайды лекции

Код семинара

Рекомендуемая литература

1. FOML глава 6.

2. MLPP глава 10.

Список литературы

  1. FOML - Fundamentals of machine learning for predictive data analytics. John D. Kelleher, Brian Mac Namee, Aoife D'Arcy. Низкая сложность
  2. HBE - Econometrics. Hansen B. Средняя сложность
  3. CMLE - Applied Causal Inference Powered by ML and AI. V. Chernozhukov, C. Hansen, N. Kallus, M. Spindler, V. Syrgkanis Средняя сложность
  4. MLPP - Machine learning a probabilistic perspective. Kevin P. Murphy. Высокая сложность