Машинное обучение в экономике бакалавриат 2024-2025 — различия между версиями

Материал из Wiki - Факультет компьютерных наук
Перейти к: навигация, поиск
(Домашнее задание 2)
Строка 66: Строка 66:
  
 
2. MLPP глава 10.
 
2. MLPP глава 10.
 
== Неделя 2. Метод ближайших соседей ==
 
 
=== Основные материалы ===
 
 
[https://github.com/bogdanpotanin/Machine-Learning/blob/main/%D0%9B%D0%B5%D0%BA%D1%86%D0%B8%D1%8F%202.%20%D0%9C%D0%B5%D1%82%D0%BE%D0%B4%20%D0%B1%D0%BB%D0%B8%D0%B6%D0%B0%D0%B9%D1%88%D0%B8%D1%85%20%D1%81%D0%BE%D1%81%D0%B5%D0%B4%D0%B5%D0%B9.pdf Слайды лекции]
 
 
[https://colab.research.google.com/drive/1a2sgrKj_ap58JKRixlG2xvopTmV7dU_8?usp=sharing Код семинара]
 
 
=== Рекомендуемая литература ===
 
 
1. FOML глава 5.
 
 
2. MLPP глава 16.
 
 
== Неделя 3. Деревья ==
 
 
=== Основные материалы ===
 
 
[https://github.com/bogdanpotanin/Machine-Learning/blob/main/%D0%9B%D0%B5%D0%BA%D1%86%D0%B8%D1%8F%203.%20%D0%94%D0%B5%D1%80%D0%B5%D0%B2%D1%8C%D1%8F.pdf Слайды лекции]
 
 
[https://colab.research.google.com/drive/1vXOMuDUFSxqO4XFpvvcpf4SWokIx4Lk9?usp=sharing Код семинара]
 
 
=== Рекомендуемая литература ===
 
 
1. FOML глава 4.
 
 
== Неделя 4. Логистическая регрессия и метод опорных векторов ==
 
 
=== Основные материалы ===
 
 
[https://github.com/bogdanpotanin/Machine-Learning/blob/main/%D0%9B%D0%B5%D0%BA%D1%86%D0%B8%D1%8F%204.%20%D0%9B%D0%BE%D0%B3%D0%B8%D1%81%D1%82%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B0%D1%8F%20%D1%80%D0%B5%D0%B3%D1%80%D0%B5%D1%81%D1%81%D0%B8%D1%8F%20%D0%B8%20%D0%BC%D0%B5%D1%82%D0%BE%D0%B4%20%D0%BE%D0%BF%D0%BE%D1%80%D0%BD%D1%8B%D1%85%20%D0%B2%D0%B5%D0%BA%D1%82%D0%BE%D1%80%D0%BE%D0%B2.pdf Слайды лекции]
 
 
[https://colab.research.google.com/drive/1vqEDTOwBGkz0mEM4i4SPxHvVRrJfTjmy?usp=sharing Код семинара]
 
 
=== Рекомендуемая литература ===
 
 
1. FOML глава 7.
 
 
2. MLPP главы 8 и 14.5.
 
 
=== Дополнительные материалы ===
 
 
1. [https://projecteuclid.org/journalArticle/Download?urlId=10.1214%2Faos%2F1013203451 Статья, в которой был предложен градиентный бустинг]
 
 
== Неделя 5. Машинное обучение в эконометрике ==
 
 
=== Основные материалы ===
 
 
[https://github.com/bogdanpotanin/Machine-Learning/blob/main/%D0%9B%D0%B5%D0%BA%D1%86%D0%B8%D1%8F%205.%20%D0%9C%D0%B0%D1%88%D0%B8%D0%BD%D0%BD%D0%BE%D0%B5%20%D0%BE%D0%B1%D1%83%D1%87%D0%B5%D0%BD%D0%B8%D0%B5%20%D0%B2%20%D1%8D%D0%BA%D0%BE%D0%BD%D0%BE%D0%BC%D0%B5%D1%82%D1%80%D0%B8%D0%BA%D0%B5.pdf Слайды лекции]
 
 
[https://colab.research.google.com/drive/11ss8xdr6B3FPeIExktOZ90GFzGAS7mq5?usp=sharing Код семинара]
 
 
=== Рекомендуемая литература ===
 
 
1. HBE глава 29.
 
 
=== Дополнительные материалы ===
 
 
1. [https://www.jstatsoft.org/index.php/jss/article/view/v108i03/4527 Двойное машинное обучение в R]
 
 
2. [https://arxiv.org/pdf/2301.09397.pdf Двойное машинное обучение в STATA]
 
 
3. [https://jmlr.org/papers/volume23/21-0862/21-0862.pdf Двойное машинное обучение в python].
 
 
4. [https://www.youtube.com/watch?v=eHOjmyoPCFU&t=1552s Видео лекции о теории двойного машинного обучения от создателя метода]
 
 
5. [https://www.youtube.com/watch?v=ErecsyKEq74 Видео лекции о программной реализации двойного машинного обучения от создателей пакета]
 
 
'''Примечание''': пакеты в R и python разработаны одними и теми же людьми, поэтому практически идентичны. Однако, в статье про пакет в R все расписано гораздо подробней и понятней, с большим числом наглядных примеров и наиболее важными теоретическими выкладками.
 
 
== Неделя 6. Эффекты воздействия ==
 
 
=== Основные материалы ===
 
 
[https://github.com/bogdanpotanin/Machine-Learning/blob/main/%D0%9B%D0%B5%D0%BA%D1%86%D0%B8%D1%8F%206.%20%D0%AD%D1%84%D1%84%D0%B5%D0%BA%D1%82%D1%8B%20%D0%B2%D0%BE%D0%B7%D0%B4%D0%B5%D0%B9%D1%81%D1%82%D0%B2%D0%B8%D1%8F.pdf Слайды лекции]
 
 
[https://colab.research.google.com/drive/1uFqihpgQxbPw61kz3N2icOzqPGeK_H-d?usp=sharing Код семинара]
 
 
=== Рекомендуемая литература ===
 
 
1. MLPP главы 16.5 и 28.
 
 
2. HBE главы 12.34 и 29.22.
 
 
=== Дополнительные материалы ===
 
 
[https://mixtape.scunning.com Простое, но достаточно подробное введение в causal inference.]
 
 
[https://www.sciencedirect.com/science/article/pii/S0304407606001023 Теория оценивания LATE с использованием дополнительных регрессоров]
 
 
[https://academic.oup.com/ectj/article/27/2/213/7602388?login=false Примеры использования машинного обучения для оценивания эффектов воздействия в прикладных исследованиях]
 
 
== Неделя 7. Нейронные сети ==
 
 
=== Основные материалы ===
 
 
[https://github.com/bogdanpotanin/Machine-Learning/blob/main/%D0%9B%D0%B5%D0%BA%D1%86%D0%B8%D1%8F%207.%20%D0%9D%D0%B5%D0%B9%D1%80%D0%BE%D0%BD%D0%BD%D1%8B%D0%B5%20%D1%81%D0%B5%D1%82%D0%B8.pdf Слайды лекции]
 
 
[https://colab.research.google.com/drive/1QuoHICOPZNfj3Z0ZpYC248zRAwqDSXfU?usp=sharing Код семинара]
 
 
=== Рекомендуемая литература ===
 
 
1. MLPP главы 16.5 и 28.
 
 
=== Дополнительные материалы ===
 
 
[https://www.cs.toronto.edu/~rsalakhu/papers/srivastava14a.pdf 1. Статья, в которой был предложен метод исключения (dropout).]
 
 
== Неделя 8. Рекуррентные нейронные сети ==
 
 
=== Основные материалы ===
 
 
[https://github.com/bogdanpotanin/Machine-Learning/blob/main/%D0%9B%D0%B5%D0%BA%D1%86%D0%B8%D1%8F%208.%20%D0%A0%D0%B5%D0%BA%D1%83%D1%80%D1%80%D0%B5%D0%BD%D1%82%D0%BD%D1%8B%D0%B5%20%D0%BD%D0%B5%D0%B9%D1%80%D0%BE%D0%BD%D0%BD%D1%8B%D0%B5%20%D1%81%D0%B5%D1%82%D0%B8.pdf Слайды лекции]
 
 
[https://colab.research.google.com/drive/1R--ZslnpKE47FAk9X4I8YefqZm0sIn2J?usp=sharing Код семинара]
 
 
== Неделя 9. Большие языковые модели ==
 
 
=== Основные материалы ===
 
 
[https://colab.research.google.com/drive/1-pXQi7FqvXT_NmQafbKF6bmmk1PSEMQ2?usp=sharing Код лекции]
 
 
[https://colab.research.google.com/drive/12CwGbEFp0nBiRJnKJIppdKDio8PBsJQW?usp=sharing Код семинара]
 
 
== Неделя 10. Повторение ==
 
 
=== Консультация на лекции ===
 
*[https://github.com/bogdanpotanin/Machine-Learning/blob/main/%D0%9A%D0%BE%D0%BD%D1%81%D1%83%D0%BB%D1%8C%D1%82%D0%B0%D1%86%D0%B8%D1%8F.%20%D0%9C%D0%9E.%202023-2024.pdf Задачи]
 
*[https://youtu.be/chChWaDkYEI Видео 1]
 
*[https://youtu.be/si0jgqis1fY Видео 2]
 
*[https://youtu.be/ET47Z_r9B98 Видео 3]
 
*[https://youtu.be/m8Crj5Nh_20 Видео 4]
 
 
=== Консультация на семинаре ===
 
 
*[https://github.com/bogdanpotanin/Machine-Learning/blob/main/%D0%AD%D0%BA%D0%B7%D0%B0%D0%BC%D0%B5%D0%BD.%20%D0%9F%D1%80%D0%B5%D0%B4%D0%B2%D0%B0%D1%80%D0%B8%D1%82%D0%B5%D0%BB%D1%8C%D0%BD%D1%8B%D0%B9.%20%D0%9C%D0%9E.%202023-2024.pdf Задачи]
 
  
 
= Список литературы =
 
= Список литературы =

Версия 18:50, 2 апреля 2025

Материалы для повторения

Викистранички курсов по теории вероятностей и математической статистике:

Видео про применение python в математической статистике:

Информация о курсе

Оценка = 0.01 * ДЗ1 + 0.29 * ДЗ2 + 0.7 * Экзамен

Домашнее задание

Домашнее задание 1

Дедлайн: 18 мая

Необходимо внести данные группы (до трех человек включительно), в которой будет выполняться второе домашнее задание, в таблицу.

Домашнее задание 2

Дедлайн: 1 июня

Информация об оформлении и формате сдачи домашней работы указана в тексте задания (появится позже).

Консультация о генерации данных 2023-2024:

Экзамен

Условие экзамена

Экзамены прошлых лет

Пример экзамена с решением 2023-2024

Экзамен 2023-2024 с решениями

Экзамен 2024-2025 с решениями, магистратура

Неделя 0. Введение в машинное обучение

Слайды лекции

Неделя 1. Байесовские сети

Основные материалы

Слайды лекции

Код семинара

Рекомендуемая литература

1. FOML глава 6.

2. MLPP глава 10.

Список литературы

  1. FOML -- Fundamentals of machine learning for predictive data analytics. John D. Kelleher, Brian Mac Namee, Aoife D'Arcy. Низкая сложность
  2. HBE -- Econometrics. Hansen B. Средняя сложность
  3. CMLE -- Applied Causal Inference Powered by ML and AI. V. Chernozhukov, C. Hansen, N. Kallus, M. Spindler, V. Syrgkanis Средняя сложность
  4. MLPP -- Machine learning a probabilistic perspective. Kevin P. Murphy. Высокая сложность