Алгебра ПИ 2023-2024 — различия между версиями
(Добавлен раздел лекций и ПУД) |
м (→Прошедшие лекции) |
||
Строка 40: | Строка 40: | ||
Лекция 4 (27.09.2023): | Лекция 4 (27.09.2023): | ||
Свойства определителя: 2. Полилинейность. 3. Кососимметричность. 4. Достаточные условия обнуления: нулевая строка и совпадение строк. Утверждение об эквивалентности кососимметричности и обнуления на совпадающих аргументах для линейной функции. 5. Определитель не меняется, если к строке добавить линейную комбинацию других. 6. Определитель равен нулю, если строка равна линейной комбинации остальных. 7. Значение определителя на единичной матрице. Утверждение о том, что любая полилинейная кососимметрическая функция является определителем, с точностью до множителя (доказательство для n=2). Второе определение детерминанта как полилинейной кососимметрической функции от столбцов, равной 1 на единичной матрице. 8. Разложение по строке. Дополняющий минор, алгебраическое дополнение. | Свойства определителя: 2. Полилинейность. 3. Кососимметричность. 4. Достаточные условия обнуления: нулевая строка и совпадение строк. Утверждение об эквивалентности кососимметричности и обнуления на совпадающих аргументах для линейной функции. 5. Определитель не меняется, если к строке добавить линейную комбинацию других. 6. Определитель равен нулю, если строка равна линейной комбинации остальных. 7. Значение определителя на единичной матрице. Утверждение о том, что любая полилинейная кососимметрическая функция является определителем, с точностью до множителя (доказательство для n=2). Второе определение детерминанта как полилинейной кососимметрической функции от столбцов, равной 1 на единичной матрице. 8. Разложение по строке. Дополняющий минор, алгебраическое дополнение. | ||
+ | |||
+ | Лекция 5 (04.10.2023): | ||
+ | Свойства определителя: 9. Фальшивое разложение. 10. Определитель верхнетреугольной матрицы. 11. Определитель блочной матрицы. 12. Определитель произведения с доказательством. | ||
+ | Вычисление определителей с помощью элементарных преобразований и рекуррентных соотношений. | ||
+ | Доказательство правила Крамера. Определение обратной матрицы. Её единственность. Теорема о критерии существования обратной матрицы с доказательством. Союзная матрица. Формула для вычисления обратной матрицы. | ||
+ | |||
+ | Лекция 6 (11.10.2023): | ||
+ | Матрица обратная к произведению матриц и матрица обратная к транспонированной матрице. Вычисление обратной матрицы с помощью элементарных преобразований и по формуле. Минор. Ранг матрицы. Базисный минор. Два свойства ранга матрицы: ранг транспонированной матрицы (с доказательством) и поведение ранга при элементарных преобразованиях. Определение линейной комбинации строк. Линейная зависимость строк (столбцов). Линейно независимые строки. | ||
= Литература = | = Литература = |
Версия 23:14, 11 октября 2023
Содержание
[убрать]Преподаватели и учебные ассистенты
Группа | БПИ 231 | БПИ 232 | БПИ 233 | БПИ 234 | БПИ 235 | БПИ 236 | БПИ 237 | БПИ 238 | БПИ 239 | БПИ 2310 | БПИ 2311 |
---|---|---|---|---|---|---|---|---|---|---|---|
Лектор | Михайлец Екатерина Викторовна | ||||||||||
Семинаристы | Михайлец Екатерина Викторовна | Зайцева Юлия Ивановна | Хрыстик Михаил Андреевич | Шипицына Алина Денисовна | Шахматов Кирилл Вениаминович | Зароднюк Алёна Владимировна | Бельдиев Иван Сергеевич | Максаев Артём Максимович | Преснова Екатерина Денисовна | Зайцева Юлия Ивановна | Медведь Никита Юрьевич |
Ассистенты | Абрамов Александр, Дымов Андрей | Власов Николай, Пичугин Владислав | Светличный Лев, Макагонов Даниил | Кухтина Юлия, Михайлов Владислав | Шмайхель Андрей, Сергеев Дмитрий | Бесшапов Алексей, Гладких Иван | Даниелян Сергей, Соловкин Александр | Кунашев Данил, Фролов-Буканов Виктор | Альберштейн Герман, Беликов Георгий | Никифорова Алла, Карлинский Леонид | Тямин Илья, Кулишенко Макар |
Консультации
Вы можете посещать как консультации, организованные для вашей группы, так и консультации других групп, если не удаётся посещать свои.
Аттестация и оценки
2023/2024 учебный год 2 модуль
О1=0,22∙О_(Кр-1мод)+0,14∙О_(Дз-1 и 2 мод)+0,08∙О_(Сем)+0,56∙О_(Экз1)
Здесь О_(Сем) — оценка от 0 до 10 баллов, учитывающая регулярность посещения семинаров, активность на семинарах, в том числе решение задач у доски, и выполнение текущих домашних работ в 1-2 модулях. Оценки за домашние задания в 1 и 2 модулях, а также в 3 и 4 модулях вычисляются как среднее арифметическое О_(Дз-мод1(3)) и О_(Дз-мод2(4)). В конце второго и четвертого модуля проводятся письменные экзамены.
2023/2024 учебный год 4 модуль
О2=0,245∙О_(Кр-3мод)+0,245∙О_(Коллоквиум-4мод)+0,11∙О_(Сем)+0,1∙О_(Дз-3 и 4 мод)+0,3∙О_(Экз2)
Здесь О_(Сем) – оценка от 0 до 10 баллов, учитывающая посещение семинаров, активность на семинарах, в том числе решение задач у доски, и выполнение текущих домашних работ в 3-м и 4-м модулях. Оценки за домашние задания в 1 и 2 модулях, а также в 3 и 4 модулях вычисляются как среднее арифметическое О_(Дз-мод1(3)) и О_(Дз-мод2(4)). В конце второго и четвертого модуля проводятся письменные экзамены.
Прошедшие лекции
Лекция 1 (06.09.2023): Операции над матрицами: сложение, умножение на число, умножение. Свойства операций над матрицами: сложения и умножения на скаляр, умножения. Единичная матрица. Доказательство ассоциативности умножения матриц.
Лекция 2 (13.09.2023): Транспонирование и его свойства. Доказательство связи умножения и транспонирования. Элементарные преобразования строк матрицы. Ступенчатый вид матрицы и канонический (улучшенный ступенчатый) вид матрицы. Теорема о методе Гаусса с доказательством.
Лекция 3 (20.09.2023): Системы линейных алгебраических уравнений и их связь с методом Гаусса. Перестановки и подстановки. Инверсии. Транспозиции. Знак и чётность перестановки и подстановки. Циклическая запись. Умножение подстановок. Тождественная подстановка. Обратная подстановка. Общая формула для определителя произвольного порядка. Вычисление определителя матрицы порядков 2 и 3. Свойства определителя, в частности: 1. определитель транспонированной матрицы с доказательством.
Лекция 4 (27.09.2023): Свойства определителя: 2. Полилинейность. 3. Кососимметричность. 4. Достаточные условия обнуления: нулевая строка и совпадение строк. Утверждение об эквивалентности кососимметричности и обнуления на совпадающих аргументах для линейной функции. 5. Определитель не меняется, если к строке добавить линейную комбинацию других. 6. Определитель равен нулю, если строка равна линейной комбинации остальных. 7. Значение определителя на единичной матрице. Утверждение о том, что любая полилинейная кососимметрическая функция является определителем, с точностью до множителя (доказательство для n=2). Второе определение детерминанта как полилинейной кососимметрической функции от столбцов, равной 1 на единичной матрице. 8. Разложение по строке. Дополняющий минор, алгебраическое дополнение.
Лекция 5 (04.10.2023): Свойства определителя: 9. Фальшивое разложение. 10. Определитель верхнетреугольной матрицы. 11. Определитель блочной матрицы. 12. Определитель произведения с доказательством. Вычисление определителей с помощью элементарных преобразований и рекуррентных соотношений. Доказательство правила Крамера. Определение обратной матрицы. Её единственность. Теорема о критерии существования обратной матрицы с доказательством. Союзная матрица. Формула для вычисления обратной матрицы.
Лекция 6 (11.10.2023): Матрица обратная к произведению матриц и матрица обратная к транспонированной матрице. Вычисление обратной матрицы с помощью элементарных преобразований и по формуле. Минор. Ранг матрицы. Базисный минор. Два свойства ранга матрицы: ранг транспонированной матрицы (с доказательством) и поведение ранга при элементарных преобразованиях. Определение линейной комбинации строк. Линейная зависимость строк (столбцов). Линейно независимые строки.
Литература
Учебники
- А.И. Кострикин. Введение в алгебру. Часть I. Основы алгебры. М.: Физматлит, 1994
- А.И. Кострикин. Введение в алгебру. Часть II. Линейная алгебра. М.: Физматлит, 2000
Сборники задач
- И.В. Проскуряков. Сборник задач по линейной алгебре (любое издание, например М.: БИНОМ, 2005)
- Сборник задач по алгебре под редакцией А.Н. Кострикина. Новое издание. М.: МЦНМО, 2009
- Г.Д. Ким, Л.В. Крицков. Алгебра и аналитическая геометрия. Теоремы и задачи. Том I. М.: "Планета знаний", 2007