Probability and Statistics (DSBA) — различия между версиями
(Новая страница: «= About = This page contains information about Statistics course at DSBA. Actual syllabus can be found [https://www.dropbox.com/s/1rxg7910zxakznv/Syllabus%20for…») |
|||
(не показана одна промежуточная версия этого же участника) | |||
Строка 50: | Строка 50: | ||
= Grading system = | = Grading system = | ||
− | + | 2022/2023 2nd module<br> | |
− | + | 0.25 * Fall Home assignments + 0.25 * Fall midterm + 0.5 * Winter exam<br> | |
− | 0. | + | 2022/2023 4th module<br> |
− | + | Module2_score*0,3+ HA (m3-m4)*0,3+ Spring Midterm*0,25+Final Exam*0,15 | |
− | + | ||
− | + | ||
− | 0. | + | |
− | + | ||
− | + | ||
== Rules == | == Rules == |
Текущая версия на 12:14, 18 ноября 2022
Содержание
[убрать]About
This page contains information about Statistics course at DSBA.
Actual syllabus can be found here.
Teachers and assistants
Group | БПАД211 | БПАД212 | БПАД213 | БПАД214 |
---|---|---|---|---|
Teacher | Peter Lukianchenko | |||
Assistant | Maria Alekseeva | Matvey Ryumin | Kirill Khodakovskiy | Anastasia Chernysheva |
Communication
We use Telegram messenger to share files and Zoom meetings links.
Link to course channel: click
Lecture notes
Lecture 1 (01.09.2021). Welcome to Statistics!
Lecture 2 (08.09.2021). Axioms of probability. Basics of combinatorics. Geometric probability.
Lecture 3 (15.09.2021). Random variable. Discrete pdf. Expectation and variance. Bernoulli distribution. Bayes rule.
Lecture 4 (22.09.2021). Joint discrete distribution. Conditional probability. Covariance. Correlation.
Lecture 5 (29.09.2021) Covariance. Correlation. Continuous distribution.
Lecture 6 (06.10.2021) Continuous distribution.
Lecture 7 (13.10.2021) Normal distribution. Standard normal distribution. Joint distribution. Uniform distribution.
Lecture 8 (27.10.2021) Data representation. Exponential, Poisson, and Uniform distributions. Continuity correction.
Lectures 9-10 (2-3.11.2021) Law of large numbers. Distribution of a function of random variable. Distribution of sample proportion. Chi-squared distribution.
Seminar notes
Hometask
Grading system
2022/2023 2nd module
0.25 * Fall Home assignments + 0.25 * Fall midterm + 0.5 * Winter exam
2022/2023 4th module
Module2_score*0,3+ HA (m3-m4)*0,3+ Spring Midterm*0,25+Final Exam*0,15
Rules
- Homework submitted after the general deadline will not be accepted.
- The common mistakes made in the homework will be discussed during the seminars.
- Any fact of cheating or breach of academic integrity will result in receiving a "0" (zero) for this work.