Dopglavy DM 1920 — различия между версиями
Строка 93: | Строка 93: | ||
Теорема Бонди-Хватала: [http://freeusermanuals.com/backend/web/manuals/1521810604HamiltonBondyAndChvatal.pdf http://freeusermanuals.com/backend/web/manuals/1521810604HamiltonBondyAndChvatal.pdf] <br> | Теорема Бонди-Хватала: [http://freeusermanuals.com/backend/web/manuals/1521810604HamiltonBondyAndChvatal.pdf http://freeusermanuals.com/backend/web/manuals/1521810604HamiltonBondyAndChvatal.pdf] <br> | ||
Теорема Хватала: Р. Дистель, Теория графов <br> | Теорема Хватала: Р. Дистель, Теория графов <br> | ||
+ | Планарные графы: Р. Дистель, Теория графов <br> | ||
<!--- | <!--- | ||
Многочлены для булевых функций: [http://www.thi.informatik.uni-frankfurt.de/~jukna/boolean/index.html Stasys Jukna, Boolean Function Complexity: Advances and Frontiers] <br> | Многочлены для булевых функций: [http://www.thi.informatik.uni-frankfurt.de/~jukna/boolean/index.html Stasys Jukna, Boolean Function Complexity: Advances and Frontiers] <br> | ||
− | |||
Неравенство Чернова: https://www.cs.cmu.edu/afs/cs/academic/class/15859-f04/www/scribes/lec9.pdf <br> | Неравенство Чернова: https://www.cs.cmu.edu/afs/cs/academic/class/15859-f04/www/scribes/lec9.pdf <br> | ||
Вероятностный алгоритм проверки чисел на простоту: Michael Sipser, Introduction to the Theory of Computation <br> | Вероятностный алгоритм проверки чисел на простоту: Michael Sipser, Introduction to the Theory of Computation <br> |
Версия 12:59, 24 января 2020
Общая информация
Занятие 16.10.19 не состоится!
Дедлайн по домашним заданиям: 04.12.19
Экзамен будет проходить на неделе с 16 декабря по 20 декабря. Будет доступно несколько возможностей по времени.
Расписание
Первое занятие пройдет 18 сентября с 16:40 до 18:00 в ауд. R306.
Последующие занятия будут проходить по средам с 16:40 до 18:00 в ауд. D510.
Материалы курса
Второй семестр
Дата | Summary | Домашнее задание |
---|---|---|
23.01.20 | Миноры и топологические миноры. 2-связные и 3-связные графы. Теорема Эйлера о плоских графах. Теорема Куратовского. | Листок 9 |
Первый семестр
Дата | Summary | Домашнее задание |
---|---|---|
18.09.19 | Числа Каталана. Рекурсивное определение и определение через баланс скобок, их эквивалентность. Рекуррентная формула для чисел Каталана. Выводы формулы для чисел Каталана: метод отражений. | Листок 1 |
25.09.19 | Логика высказываний, ее корректность. Лемма о дедукции. | Листок 2 |
02.10.19 | Замкнутые классы булевых функций. Теорема Поста. | Листок 3 |
9.10.19 | Лемма Шпернера. Теорема Брауэра. | Листок 4 |
30.10.19 | Вполне упорядоченные множества, их свойства. Начальные отрезки, их свойства. Теорема о рекурсии, формулировка. | Листок 5 |
06.11.19 | Теорема о рекурсии, доказательство. Из двух вполне упорядоченных множеств одно изоморфно начальному отрезку другого. Теорема Цермело. | Тот же листок |
13.11.19 | Разбиение булевого куба на симметричные плотные цепи, приложение. Теорема Шпернера, LYM неравенство. | Листок 6 |
20.11.19 | Гамильтоновы графы. Теорема Бонди-Хватала. Теорема Хватала о степенных последовательностях. | Листок 7 |
27.11.19 | Потоки и разрезы. Теорема Форда-Фалкерсона. | Листок 8 |
Источники
Числа Каталана: Черновик учебника по дискретной математике
Логика высказываний: Верещагин, А. Шень, Языки и исчисления.
Замкнутые классы булевых функций: Верещагин, А. Шень, Языки и исчисления.
Лемма Шпернера, теорема Брауэра: http://math.mit.edu/~fox/MAT307-lecture03.pdf
Вполне упорядоченные множества: Верещагин, А. Шень, Начала теории множеств.
Цепи и антицепи: Stasys Jukna, Extremal Combinatorics
Теорема Бонди-Хватала: http://freeusermanuals.com/backend/web/manuals/1521810604HamiltonBondyAndChvatal.pdf
Теорема Хватала: Р. Дистель, Теория графов
Планарные графы: Р. Дистель, Теория графов