Time Series and Stochastic Processes ada 21 22

Материал из Wiki - Факультет компьютерных наук
Перейти к: навигация, поиск

General course info

Teachers and assistants

Lecturer: Peter Lukianchenko

Class teacher: Boris Demeshev


Semester I

 [развернуть

Semester II

Do not forget about the home assignments!

Week 1

Lecture 1. White noise, stationarity, ACF, PACF

1.1.

1.2. Predictive interval for random walk, difference between mean, mode and median: pdf-b

Week 2

Lecture 2.

2.1. ETS model, forecasting, decomposition: pdf-a, pdf-b, pdf-c

2.2. AR(2), expected value, covariances: pdf-a, pdf-b, pdf-c

Arma notes without nonsense

Week 3

Lecture 3.

3.1. Non stationarity of ETS(AAA), solutions of recurrence equation: pdf-b

3.2. Equations is not a process. Two problems from Econometrics Olympiad: pdf-a, pdf-b, pdf-c.

Week 4

Lecture 4.

4.1. Solutions of recurrence equation: pdf-a, pdf-b, pdf-c.

4.2. Roots of lag and characteristic equation: pdf-a, pdf-b, pdf-c.

Week 5

Lecture 5

Estimation of ETS and ARMA: colab notebook

Week 6

Sources

MC + MCMC

  • James Norris, Markov chains (1998, no kernels)

Stochastic Calculus

  • Zastawniak, Basic Stochastic Processes

Time Series

UCM

Grading System