Statistics4MR-2022-23

Материал из Wiki - Факультет компьютерных наук
Перейти к: навигация, поиск

Plan

Нажми "развернуть", чтобы просмотреть содержимое - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 🡣

 [развернуть

Grades

UoL grade = 0.7 * UoL exam + 0.3 * UoL coursework

Internal grades:

Fall grade = 0.4 * HA + 0.6 December Exam

Final grade = 0.5 * Fall grade + 0.2 HA + 0.3 * Final exam

Actual grades

Log-book

Lecture recordings: youtube

lecture recordings: ya-folder

Seminar recordings

Lecture handwritten notes

HA1: deadline: 2022-12-06, 21:00.

Week 1

Naive bootstrap, t-statistic bootstrap

Sources of wisdom:

Efron, Leisurely Look at bootstrap, jackknife and cv

Tim Hesterberg, What Teachers Should Know about the Bootstrap?

Week 2

Variance estimation: jackknife, bootstrap. Bootstrap in bootstrap.

Week 3

Examples of bootstrap failures, problem solving

Week 4

Welch test, Mann-Whitney test

Week 5

Sample size calculation exercises, MDE

Week 6

Multiple comparisons: FWER.


Week 8

Multiple comparisons: FDR.


Week 9

PCA+SVD: maximum variance approach

Week 10

PCA+SVD: average R2 maximization

Week 11

PCA+SVD: problem solving