Современные методы машинного обучения (курс майнора) ИАД4

Материал из Wiki - Факультет компьютерных наук
Перейти к: навигация, поиск

Майнор по "Современным методам машинного обучения" - 2016/2017 учебный год - ИАД-4

На данной странице будут вывешиваться последние новости и материалы для семинарских занятий группы ИАД-4

27 октября коллоквиума не будет! Следите за обновлениями.

Семинарист: Шестаков Андрей shestakoffandrey@gmail.com
При обращении по почте, начинайте тему письма со слов [Майнор ИАД]

Перед тем как что-то спрашивать по почте, проверьте, нет ли ответа на ваш вопрос вот здесь.

Страница курса
Анонимные комментарии, замечания и пожелания можно оставить здесь

Таблица с оценками

Семинары

1) 15 Сентября 2016: Метод опорных векторов. Ядра. - IPython Notebook
2) 22 Сентября 2016: Методы оптимизации. Градиентный спуск и КО - IPython Notebook, data
3) 29 Сентября 2016: Методы предобработки данных - IPython Notebook, data
4) 6 Октября 2016: Вспоминаем градиентный спуск (см. памятку)
5) 13 Октября 2016: Композиции алгоритмов, бустинг - IPython Notebook
6) 20 Октября 2016: Консультация, вопросы и немного про нейронные сети (у доски)
7) 10 Ноября 2016: Пробуем нейронные сети - IPython Notebook 1, IPython Notebook 2
8) 17 Ноября 2016: Доверительные интервалы - Stats.Basics 1, Stats.Basics 2, Доверительные интервалы, Данные
9) 24 Ноября 2016: Проверка статистических гипотез - Практика, help,
10) 1 Декабря 2016: Оценка зависимостей - IPython Notebook, data1, data2,
11) 8 Декабря 2016: Линейная регрессия - IPython Notebook, data2,
12) 15 Декабря 2016: Прогнозирование временных рядов - IPython Notebook,

Домашние Задания

1) ДЗ 1., data Срок - 30 Сентября 2016
1.1) Памятка по градиентному спуску + мини задание, data Срок - 14 Октября 2016
2) ДЗ 2., data Срок - 23 Октября 2016
3) Соревнование Kaggle - Срок - 15 Ноября 2016
4) ДЗ 3 (click me!) - Срок - 24 Ноября 2016
5) ДЗ 4 (click me!) - Срок - 4 Декабря 2016
6) ДЗ 5 (click me!) - Срок - 20 Декабря 2016 23:59

Полезные ссылки (Будут пополняться)

Семинар 12

  1. Forecasting: principles and practice

Семинар 9

  1. Statistical Mistakes and How to Avoid Them

Семинар 7

  1. Neural Network interactive playground
  2. Conv NN Layer Visualization

Семинар 5

  1. Gradient boosting interactive playground
  2. About XGBoost

Семинар 2

  1. Про методы оптимизации в МО
  2. Gradient Descent Demo

Семинар 1

  1. Пример работы полиномиального ядра
  2. Описание ядер
  3. Еще про SVM

Pandas & Seaborn

  1. Pandas
  2. Effective Pandas
  3. Pandas Cheat-Sheet
  4. Pandas Visualization
  5. Seaborn

Наборы данных

  1. Портал Открытых Данных РФ
  2. Funny Datasets
  3. Сборник Открытых Данных (!!!)
  4. Еще наборы данных

FYI

  1. Spurious Correlations
  2. Correlation

Python

  1. PEP-8 Code Style Guide Cheat-sheet
  2. Python Tutorials Point
  3. Matplotlib Tutorial
  4. Matrix Manipulation Cheat-sheet
  5. Ipython Notebook
  6. Beaker Notebook
  7. yhat Rodeo

Ресурсы и Книги

  1. James, Witten, Hastie, Tibshirani — An Introduction to Statistical Learning
  2. Bishop — Pattern Recognition and Machine Learning (первые главы)
  3. MachineLearning.ru
  4. Kaggle
  5. UCI Repo
  6. Visual Intro to ML

Онлайн Курсы

  1. Andrew Ng's Course
  2. Introduction to ML
  3. Learning Data Science with Python
  4. Курс от ВШЭ
  5. Обзор МООС Курсов