Система сбора и анализа мобильных данных(проект)

Материал из Wiki - Факультет компьютерных наук
Перейти к: навигация, поиск
Ментор Паринов Андрей Андреевич
Учебный семестр Осень 2017
Учебный курс 2-й курс
Проект можно развивать на летней практике
Максимальное количество студентов, выбравших проект: 6



Что это за проект?

Разработка системы для сбора данных с сенсоров мобильных телефонов (GPS, гироскоп, акселерометр и др.). Цель создания системы - прогнозирование с помощью автоматически собираемых данных изменение важных характеристик студентов/школьников (например, снижение успеваемости или появление симптомов депрессии) - целевых характеристик, данные о которых нельзя получить автоматически. Аналогичные приложения использовались в исследованиях StudentLife и Copenhagen network study (в последнем приложение было создано на базе Funf Open Sensing Framework)

В рамках проекта каждый студент будет работать над одной из частей системы:

  • Серверная часть
  • Веб-клиент
  • Аndroid клиент
  • Iphone клиент
  • Подсистема анализа

Система предназначена для:

  • Хранения данных сенсоров мобильных телефонов
  • Рассылки коротких вопросов о текущем психологическом состоянии и т.п. (реализация experience sampling method)
  • Анализа данных и построения прогноза

Задачи:

  • Разработка серверной части
  • Разработка веб-клиента
  • Разработка мобильного приложения

Чему вы научитесь?

Есть несколько направлений развития системы. В зависимости от выбранного направления вы будете развивать либо навыки программиста либо аналитика.

Какие начальные требования?

В зависимости от направления: Python, Java, Javascript или: Scikit-learn, Neuro Nets, etc

Какие будут использоваться технологии?

Amazon AWS, MS Azure

Темы вводных занятий

  • Доступ к открытым данным с помощью Python
  • Работа с MS Azure и Amazon AWS
  • Работа с API карт

Направления развития

Данный проект возможно развивать как в программном, так и в аналитическом направлении. Возможно создание стартапа.

Критерии оценки

С каждым студентом будет обсуждаться ТЗ и шкала оценок. Общий пример:

  • 4-5: Реализация базовой функциональност и в зависимости от выбранной подсистемы ( Например, Добавление\Удаление данных)
  • 6-7: Реализация расширенной функциональности, использование оптимизированных алгоритмов
  • 8-10: Реализация с помощью нескольких технологий. Участие в обучении других участников команды

Ориентировочное расписание занятий

  • ПН, ПТ, CБ - недоступен
  • ВТ, СР - по согласованию
  • ЧТ - 10:00-13:00, 16:00-18:00
  • Место проведения занятий: Кочновский проезд, д.3
  • Лучше писать на email: aparinov@hse.ru
  • Консультант: Елизавета elizaveta.sivak@gmail.com