Разработка модели многослойной нейронной сети и ее обучение. (проект)
Ментор | Иван Лисенков |
Учебный семестр | Весна 2016 |
Учебный курс | 1-й курс |
Проект можно развивать на летней практике | |
Максимальное количество студентов, выбравших проект: 3 | |
Что это за проект?
Разработать приложение моделирующую классическую модель многослойной нейронной сети с возможностью установки вручную весов синаптических связей, а так же автоматической коррекции весов с помощью алгоритма обучения.
Чему вы научитесь?
- Формулировать постановку задачи.
- Писать надежный и понятный код.
- Основам теории нейронных сетей на примере классической модели многослойной нейронной сети.
Какие начальные требования?
- Программирование на C/C++/Python (в рамках прослушанного курса).
- Желание разобираться в современных алгоритмах теории искуственных нейронных сетей.
Какие будут использоваться технологии?
C++ / Python в рамках прослушанного курса.
Темы вводных занятий
Основы теории нейронных сетей (Модель Маккалока-Пиитса, Персептрон Розенблатта, Многослойная нейронная сеть, Алгоритм обучения многослойной нейронной сети методом обратного распространения ошибки).
Направления развития
- Визуализация обучающей выборки, предварительная обработка данных.
- Интеграция с реляционной базой данных.
Критерии оценки
4-5: реализованная и протестированная модель многослойной нейронной сети и алгоритм обучения (обратного распространения ошибки).
6-7: Оптимизация алгоритма обучения посредством автоматической коррекции шага обучения; инициализации весовых коэффициентов.
8-10: Дополнительно, визуализация процесса обучения (зависимость интегральной ошибки от номера итерации/эпохи), работа с файлами (возможность интеграции import/export файлов обучающей выборки с существующим ПО статистической обработки данных).
Ориентировочное расписание занятий
ВТ 15.00-21.00
ЧТ 15.00-21.00