Линейная алгебра и геометрия на ПМИ 2023/2024 (основной поток)

Материал из Wiki - Факультет компьютерных наук
Перейти к: навигация, поиск

Данную дисциплину вместе с основным потоком ПМИ изучают также студенты ОП "Экономика и анализ данных"

Telegram-канал: https://t.me/LA_AMI_23_osn

Преподаватели и учебные ассистенты

Группа БПМИ235 БПМИ236 БПМИ237 БПМИ238 БПМИ239 БПМИ2310 БПМИ2311 БПМИ2312 БЭАД231 БЭАД232 БЭАД233
Лектор Роман Авдеев
Семинарист Роман Авдеев Юлия Зайцева Роман Стасенко Михаил Игнатьев Кирилл Шахматов Роман Стасенко Антон Медведев Виктор Лопаткин Илья Болдырев Алёна Зароднюк Кирилл Шахматов
Ассистент1 Даниил Тимижев Ирина Скворцова Мария Прохорова Никита Волянский Анастасия Буркова Анна Зыкова-Мызина Артём Абросимов Аделя Гараева Никита Бахишев Анастасия Сотникова Анастасия Федорова
Ассистент2 Полина Рыльцева Амелия Алаева Екатерина Владимирова Владимир Васенев Максим Игнатов Александр Сидоров Арина Зайцева Кирилл Павлов Хетаг Дудиев Алина Мирзоева Никита Степанов
Ассистент курса Рита Арунова

Расписание консультаций

Формы контроля знаний студентов

  • Коллоквиум
  • Контрольная работа
  • Большие домашние задания (делящиеся на индивидуальные домашние задания и лабораторные работы)
  • Активность и работа на семинарах
  • Экзамен

Бонус:

  • Устная сдача задач из листков

Порядок формирования итоговой оценки

2-й модуль

Итоговая оценка за 1-2 модули вычисляется по формуле

Oитоговая = min(10; 0,4*Oэкз + 0,22*Oколл + 0,16*Oк/р + 0,16*Oд/з + 0,08*Oсем + 0,08*Oл),

где Oэкз — оценка за экзамен, Oколл — оценка за коллоквиум, Oк/р — оценка за контрольную работу, Oд/з — оценка за большие домашние задания, Oсем — оценка за работу на семинарах и Oл — оценка за сдачу задач из листков.

Все вычисления по указанной формуле используют неокруглённые значения промежуточных оценок. Способ округления итоговой оценки — арифметический.

4-й модуль

Итоговая оценка за 3-4 модули вычисляется по формуле

Oитоговая = min(10; 0,32*Oэкз + 0,23*Oколл + 0,17*Oк/р + 0,18*Oд/з + 0,12*Oсем + 0,08*Oл),

где Oэкз — оценка за экзамен, Oколл — оценка за коллоквиум, Oк/р — оценка за контрольную работу, Oд/з — оценка за большие домашние задания, Oсем — оценка за работу на семинарах и Oл — оценка за сдачу задач из листков.

Все вычисления по указанной формуле используют неокруглённые значения промежуточных оценок. Способ округления итоговой оценки — арифметический.

Краткое содержание лекций

1-2 модули

Лекция 1 (5.09.2023) [слайды]. Матрицы. Равенство матриц. Операции сложения и умножения на скаляр для матриц, свойства этих операций. Пространство R^n, его отождествление с матрицами-столбцами высоты n. Транспонирование матриц, его простейшие свойства. Умножение матриц, примеры.

Лекция 2 (11.09.2023) [слайды]. Основные свойства умножения матриц. Некоммутативность умножения матриц. Диагонали квадратной матрицы. Диагональные матрицы. Умножение на диагональную матрицу слева и справа. Единичная матрица и её свойства. След квадратной матрицы и его свойства. Системы линейных уравнений. Матричная форма записи системы линейных уравнений. Совместные и несовместные системы. Расширенная матрица системы линейных уравнений. Эквивалентные системы.

Лекция 3 (18.09.2023) [слайды]. Элементарные преобразования системы линейных уравнений и соответствующие преобразования строк её расширенной матрицы. Сохранение множества решений системы линейных уравнений при элементарных преобразованиях. Ступенчатые матрицы. Улучшенный ступенчатый вид матрицы. Приведение матрицы к ступенчатому виду элементарными преобразованиями строк. Приведение ступенчатой матрицы к улучшенному ступенчатому виду элементарными преобразованиями строк. Метод Гаусса решения систем линейных уравнений. Главные и свободные неизвестные. Общее решение системы линейных уравнений.

Лекция 4 (25.09.2023) [слайды]. Однородные системы линейных уравнений. Существование ненулевого решения у однородной системы линейных уравнений, в которой число неизвестных больше, чем число уравнений. Связь между множеством решений системы линейных уравнений и множеством решений соответствующей однородной системы. Реализация элементарных преобразований строк матрицы при помощи умножения слева на подходящую матрицу. Матричные уравнения вида AX=B и XA=B, общий метод их решения. Определение обратной матрицы. Обратная матрица как решение уравнения AX=E (пока без доказательства). Перестановки на множестве {1,2,...,n}. Инверсии в перестановке. Знак и чётность перестановки.

Лекция 5 (2.10.2023) [слайды]. Произведение перестановок. Ассоциативность произведения перестановок. Теорема о знаке произведения перестановок. Тождественная перестановка. Обратная перестановка и её знак. Транспозиции, знак транспозиции. Определитель квадратной матрицы. Определители порядков 2 и 3.

Лекция 6 (9.10.2023). Определитель транспонированной матрицы. Определитель матрицы со строкой (столбцом) нулей. Поведение определителя при умножении строки (столбца) на число и при разложении строки (столбца) в сумму двух строк (столбцов). Определитель матрицы с двумя одинаковыми строками (столбцами). Поведение определителя при прибавлении к строке (столбцу) другой, умноженной на число. Изменение знака определителя при перестановке двух строк (столбцов). Верхнетреугольные и нижнетреугольные матрицы, их определители.

Лекция 7 (16.10.2023). Определитель с углом нулей. Определитель произведения матриц. Дополнительные миноры и алгебраические дополнения к элементам квадратной матрицы. Лемма об определителе матрицы, содержащей ровно один ненулевой элемент в некоторой строке. Разложение определителя по строке (столбцу). Лемма о фальшивом разложении определителя. Обратная матрица, её единственность. Невырожденные матрицы. Определитель обратной матрицы. Присоединённая матрица. Критерий обратимости квадратной матрицы, явная формула для обратной матрицы. Следствия из критерия обратимости квадратной матрицы.

Лекция 8 (23.10.2023) [слайды]. Формулы Крамера. Понятие поля. Простейшие примеры. Построение поля комплексных чисел. Алгебраическая форма комплексного числа, его действительная и мнимая части. Комплексное сопряжение. Геометрическая модель комплексных чисел, интерпретация сложения и сопряжения в этой модели. Модуль комплексного числа, его свойства. Аргумент комплексного числа. Тригонометрическая форма комплексного числа. Умножение и деление комплексных чисел в тригонометрической форме. Возведение в степень комплексных чисел в тригонометрической форме, формула Муавра.

Лекция 9 (6.11.2023) [слайды]. Извлечение корней из комплексных чисел. Основная теорема алгебры комплексных чисел (без доказательства). Деление многочленов с остатком. Теорема Безу. Кратность корня многочлена. Утверждение о том, что всякий многочлен степени n с комплексными коэффициентами имеет ровно n корней с учётом кратностей. Векторные пространства, примеры. Простейшие следствия из аксиом векторного пространства.

Лекция 10 (13.11.2023) [слайды]. Подпространства векторных пространств. Утверждение о том, что множество решений однородной системы линейных уравнений с n неизвестными является подпространством в F^n. Линейная комбинация конечного набора векторов. Линейная оболочка подмножества векторного пространства. Утверждение о том, что линейная оболочка системы векторов является подпространством объемлющего векторного пространства. Линейно зависимые и линейно независимые системы векторов.

Лекция 11 (20.11.2023) [слайды]. Критерий линейной зависимости конечного набора векторов. Основная лемма о линейной зависимости. Базис векторного пространства. Конечномерные и бесконечномерные векторные пространства. Независимость числа элементов в базисе векторного пространства от выбора базиса. Размерность конечномерного векторного пространства. Характеризация базисов в терминах единственности линейного выражения векторов. Утверждение о возможности выбора из конечной системы векторов базиса её линейной оболочки. Дополнение конечной линейно независимой системы векторов до базиса конечномерного векторного пространства.

Лекция 12 (27.11.2023). Лемма о добавлении вектора к конечной линейной независимой системе. Размерность подпространства конечномерного векторного пространства. Фундаментальная система решений однородной системы линейных уравнений. Метод построения фундаментальной системы решений. Ранг системы векторов. Связь ранга системы векторов с размерностью её линейной оболочки. Ранг матрицы: столбцовый и строковый.

Лекция 13 (4.12.2023). Сохранение линейных зависимостей между столбцами матрицы при элементарных преобразованиях строк. Инвариантность столбцового и строкового рангов матрицы при элементарных преобразованиях строк и столбцов. Столбцовый и строковый ранги матрицы, имеющей улучшенный ступенчатый вид. Равенство столбцового и строкового рангов матрицы. Связь ранга квадратной матрицы с её определителем. Подматрицы. Связь рангов матрицы и её подматрицы. Миноры. Теорема о ранге матрицы. Теорема Кронекера–Капелли. Критерий существования единственного решения у совместной системы линейных уравнений в терминах ранга её матрицы коэффициентов. Критерий существования единственного решения у системы линейных уравнений с квадратной матрицей коэффициентов в терминах её определителя. Размерность пространства решений однородной системы линейных уравнений в терминах ранга её матрицы коэффициентов.

Лекция 14 (11.12.2023). Реализация подпространства в F^n в качестве множества решений однородной системы линейных уравнений. Координаты вектора по отношению к фиксированному базису векторного пространства. Описание всех базисов конечномерного векторного пространства в терминах одного базиса и матриц координат. Матрица перехода от одного базиса конечномерного векторного пространства к другому. Формула преобразования координат вектора при замене базиса. Сумма двух подпространств векторного пространства. Связь размерностей двух подпространств с размерностями их суммы и пересечения.

3-4 модули

Лекция 15 (18.12.2023) [слайды]. Сумма нескольких подпространств векторного пространства. Линейно независимые подпространства, пять эквивалентных условий. Разложение векторного пространства в прямую сумму нескольких подпространств. Проекция вектора на подпространство вдоль дополнительного подпространства. Линейные отображения векторных пространств. Примеры. Изоморфизм векторных пространств.

Лекция 16 (15.01.2024) [слайды]. Отображение, обратное к изоморфизму векторных пространств. Композиция двух линейных отображений, композиция двух изоморфизмов. Изоморфные векторные пространства. Отношение изоморфности на множестве всех векторных пространств. Классы изоморфизма векторных пространств. Критерий изоморфности двух конечномерных векторных пространств. Задание линейного отображения путём задания образов векторов фиксированного базиса. Матрица линейного отображения. Примеры.

Лекция 17 (22.01.2024) [слайды]. Связь координат вектора и его образа при линейном отображении. Формула изменения матрицы линейного отображения между векторными пространствами V и W при замене их базисов. Операции сложения и умножения на скаляр на множестве всех линейных отображений между двумя векторными пространствами. Матрица суммы двух линейных отображений и произведения линейного отображения на скаляр. Изоморфизм между пространством Hom(V,W) и пространством (m x n)-матриц, где n = dim V, m = dim W. Матрица композиции двух линейных отображений. Ядро и образ линейного отображения; утверждение о том, что они являются подпространствами в соответствующих векторных пространствах. Критерий инъективности линейного отображения в терминах его ядра. Характеризация изоморфизмов в терминах их ядер и образов. Связь размерности образа линейного отображения с рангом его матрицы.

Лекция 18 (29.01.2024) [слайды]. Инвариантность ранга матрицы относительно умножения на квадратную невырожденную матрицу слева или справа. Свойство образов векторов, дополняющих базис ядра до базиса всего пространства. Теорема о связи размерностей ядра и образа линейного отображения. Приведение матрицы линейного отображения к диагональному виду с единицами и нулями на диагонали. Линейные функции на векторном пространстве. Примеры. Двойственное (сопряжённое) векторное пространство, его размерность в конечномерном случае. Двойственный базис. Утверждение о том, что всякий базис сопряжённого пространства двойствен ровно одному базису исходного пространства.

Лекция 19 (5.02.2024) [слайды]. Билинейные формы на векторном пространстве. Примеры. Матрица билинейной формы по отношению к фиксированному базису. Существование и единственность билинейной формы с заданной матрицей. Формула изменения матрицы билинейной формы при переходе к другому базису. Ранг билинейной формы. Симметричные билинейные формы. Критерий симметричности билинейной формы в терминах её матрицы в каком-либо базисе. Теорема о диагонализации симметричной билинейной формы. Симметричные элементарные преобразования квадратной матрицы. Симметричный алгоритм Гаусса.

Лекция 20 (12.02.2024) [снимок доски, видеозапись]. Угловые миноры матрицы. Метод Якоби для симметричных билинейных форм. Квадратичные формы на векторном пространстве. Примеры. Соответствие между симметричными билинейными формами и квадратичными формами. Симметризация билинейной формы и поляризация квадратичной формы. Канонический вид квадратичной формы. Нормальный вид квадратичной формы над полем R. Приведение квадратичной формы над R к нормальному виду.

Лекция 21 (19.02.2024) [слайды]. Положительный и отрицательный индексы инерции квадратичной формы над R. Закон инерции. Следствие метода Якоби о вычислении индексов инерции квадратичной формы над R. Положительно определённые, отрицательно определённые, неотрицательно определённые, неположительно определённые, неопределённые квадратичные формы над R. Примеры. Критерий Сильвестра положительной определённости квадратичной формы. Критерий отрицательной определённости квадратичной формы. Евклидово пространство. Скалярное произведение. Длина вектора евклидова пространства.

Лекция 22 (26.02.2024). Неравенство Коши–Буняковского. Угол между ненулевыми векторами евклидова пространства. Матрица Грама системы векторов евклидова пространства. Определитель матрицы Грама: неотрицательность, критерий положительности. Ортогональные векторы. Ортогональные и ортонормированные системы векторов. Ортогональный и ортонормированный базис. Координаты вектора в ортогональном (ортонормированном) базисе. Теорема о существовании ортонормированного базиса. Метод ортогонализации Грама–Шмидта. Описание всех ортонормированных базисов в терминах одного ортонормированного базиса и матриц перехода.

Лекция 23 (4.03.2024). Ортогональные матрицы и их свойства. Ортогональное дополнение подмножества евклидова пространства. Размерность ортогонального дополнения подпространства, ортогональное дополнение к ортогональному дополнению подпространства. Разложение евклидова пространства в прямую сумму подпространства и его ортогонального дополнения. Ортогональная проекция вектора на подпространство, ортогональная составляющая вектора относительно подпространства. Формула для ортогональной проекции вектора на подпространство в терминах его ортогонального (ортонормированного) базиса. Явная формула для ортогональной проекции вектора на подпространство в R^n, заданное своим базисом. Теорема Пифагора в евклидовом пространстве. Расстояние между векторами евклидова пространства. Неравенство треугольника. Расстояние между двумя подмножествами евклидова пространства. Теорема о расстоянии от вектора до подпространства.

Лекция 24 (11.03.2024). Псевдорешение несовместной системы линейных уравнений. Метод наименьших квадратов для несовместных систем линейных уравнений: постановка задачи и её решение. Единственность псевдорешения и явная формула для него в случае линейной независимости столбцов матрицы коэффициентов. Формула для расстояния от вектора до подпространства в терминах матриц Грама. k-мерный параллелепипед. Объём k-мерного параллелепипеда в евклидовом пространстве. Вычисление объёма k-мерного параллелепипеда при помощи определителя матрицы Грама задающих его векторов. Формула для объёма n-мерного параллелепипеда в n-мерном евклидовом пространстве в терминах координат задающих его векторов в ортонормированном базисе. Отношение одинаковой ориентированности на множестве базисов евклидова пространства. Ориентация в евклидовом пространстве. Ориентированный объём n-мерного параллелепипеда в n-мерном евклидовом пространстве.

Лекция 25 (18.03.2024). Трёхмерное евклидово пространство. Векторное произведение, его выражение в координатах. Смешанное произведение трёх векторов, его свойства. Критерий компланарности трёх векторов. Критерий коллинеарности двух векторов в терминах векторного произведения. Геометрические свойства векторного произведения. Антикоммутативность и билинейность векторного произведения. Линейные многообразия в R^n. Характеризация линейных многообразий как сдвигов подпространств. Критерий равенства двух линейных многообразий. Направляющее подпространство и размерность линейного многообразия.

Лекция 26 (1.04.2024). Теорема о плоскости, проходящей через любые k+1 точек в R^n, следствия для двух и трёх точек. Понятия репера и аффинной системы координат на линейном многообразии. Случаи взаимного расположения двух линейных многообразий: совпадают, одно содержится в другом, параллельны, скрещиваются. Прямые в R^2: различные способы задания, уравнение прямой, проходящей через две различные точки. Плоскости в R^3: различные способы задания, уравнение плоскости, проходящей через три точки, не лежащие на одной прямой. Прямые в R^3: различные способы задания, уравнение прямой, проходящей через две различные точки. Взаимное расположение двух плоскостей, двух прямых, прямой и плоскости. Расстояние от точки до прямой, от точки до плоскости, между двумя скрещивающимися прямыми в R^3. Угол между двумя прямыми, между прямой и плоскостью, между двумя плоскостями.

Лекция 27 (8.04.2024) [слайды]. Линейные операторы. Матрица линейного оператора в фиксированном базисе. Следствия общих фактов о линейных отображениях: существование и единственность линейного оператора с данной матрицей в фиксированном базисе, связь координат вектора и его образа, формула изменения матрицы линейного оператора при замене базиса. Инвариантность определителя и следа матрицы линейного оператора относительно замены базиса. Подобные матрицы, отношение подобия на множестве квадратных матриц фиксированного порядка. Критерий обратимости линейного оператора в терминах его ядра, образа и определителя. Подпространства, инвариантные относительно линейного оператора. Примеры. Ограничение линейного оператора на инвариантное подпространство. Вид матрицы линейного оператора в базисе, часть которого порождает инвариантное подпространство. Вид матрицы линейного оператора в базисе, согласованном с разложением пространства в прямую сумму инвариантных подпространств. Собственные векторы, собственные значения и спектр линейного оператора. Примеры. Диагонализуемые линейные операторы. Критерий диагонализуемости линейного оператора в терминах собственных векторов.

Лекция 28 (15.04.2024) [слайды]. Собственное подпространство, отвечающее фиксированному собственному значению линейного оператора. Характеристический многочлен линейного оператора. Связь спектра линейного оператора с его характеристическим многочленом. Существование собственного вектора для линейного оператора в комплексном векторном пространстве. Алгебраическая и геометрическая кратности собственного значения линейного оператора. Связь между алгебраической и геометрической кратностями собственного значения линейного оператора. Линейная независимость собственных подпространств линейного оператора, отвечающих попарно различным собственным значениям. Диагонализуемость линейного оператора, у которого число корней характеристического многочлена равно размерности пространства. Критерий диагонализуемости линейного оператора в терминах его характеристического многочлена, а также алгебраической и геометрической кратностей его собственных значений. Примеры.

Лекция 29 (22.04.2024). Существование одномерного или двумерного инвариантного подпространства у линейного оператора в действительном векторном пространстве. Отображение, сопряжённое к линейному отображению между двумя евклидовыми пространствами: определение, существование и единственность. Матрица сопряжённого отображения в паре произвольных и паре ортонормированных базисов. Сопряжённый оператор в евклидовом пространстве. Самосопряжённые (симметрические) операторы. Существование собственного вектора у самосопряжённого оператора. Инвариантность ортогонального дополнения к подпространству, инвариантному относительно самосопряжённого оператора. Теорема о существовании у самосопряжённого оператора ортонормированного базиса из собственных векторов. Попарная ортогональность собственных подпространств самосопряжённого оператора. Приведение квадратичной формы в евклидовом пространстве к главным осям. Ортогональные линейные операторы, семь эквивалентных условий.

Лекция 30 (29.04.2024). Завершение доказательства теоремы о семи эквивалентных условиях для ортогонального оператора. Описание ортогональных операторов в одномерном и двумерном евклидовых пространствах. Инвариантность ортогонального дополнения к подпространству, инвариантному относительно ортогонального оператора. Теорема о каноническом виде ортогонального оператора. Классификация ортогональных операторов в трёхмерном евклидовом пространстве. Теорема о сингулярных базисах для линейного отображения евклидовых пространств. Сингулярное разложение матрицы и её сингулярные значения.

Лекция 31 (13.05.2024) [слайды]. Усечённое сингулярное разложение матрицы. Представление матрицы в виде суммы компонент ранга 1, связанное с её сингулярным разложением. Фробениусова норма матрицы, её инвариантность относительно умножения на ортогональную матрицу слева или справа. Теорема Эккарта-Янга о низкоранговом приближении.

Лекция 32 (20.05.2024). Прямоугольные декартовы системы координат в евклидовом пространстве. Формулы замены координат при переходе от одной прямоугольной декартовой системы координат к другой. Квадрики (гиперповерхности 2-го порядка) в R^n. Теорема о каноническом виде уравнения квадрики в евклидовом пространстве. Метрическая классификация кривых 2-го порядка в R^2. Метрическая классификация поверхностей 2-го порядка в R^3.

Лекция 33 (22.05.2024). Эллипс, гипербола, парабола: основные геометрические свойства (фокусы, директрисы, эксцентриситет, оптическое свойство). Теорема о жордановой нормальной форме линейного оператора (формулировка). Корневые подпространства линейного оператора. Теорема о разложении векторного пространства в прямую сумму корневых подпространств линейного оператора (формулировка). Сведение доказательства теоремы о жордановой нормальной форме к случаю корневого подпространства. Нильпотентные линейные операторы.

Лекция 34 (3.06.2024). Циклическое подпространство нильпотентного оператора. Конструкция жорданова базиса для нильпотентного оператора и формулы для числа жордановых клеток заданного размера. Обзор теории полуторалинейных форм и эрмитовых пространств.

Листки с задачами

Задачи из листков можно сдавать любому семинаристу по данному предмету (в том числе с пилотного потока) в часы его консультаций или по договорённости.

Правила сдачи и оценивания задач из листков:

  • каждый пункт в листке считается отдельной задачей
  • сдача задачи возможна только при наличии её решения в письменном виде
  • результатом сдачи одной задачи может быть 0 или 1

Листок 1. Матричные алгебры Ли

Сроки сдачи листка 1:

задачи принимаются в период с момента выдачи листка по 21 октября включительно

в период с 15 по 21 октября включительно одному студенту разрешается сдать не более шести задач

Листок 2. Разложения матриц

Сроки сдачи листка 2:

задачи принимаются в период с момента выдачи листка по 16 декабря включительно

в период с 10 по 16 декабря включительно одному студенту разрешается сдать не более шести задач

Листок 3. Тензорное произведение векторных пространств

Сроки сдачи листка 3:

задачи принимаются в период с момента выдачи листка по 16 марта включительно

в период с 10 по 16 марта включительно одному студенту разрешается сдать не более шести задач

Листок 4. Конусы

Сроки сдачи листка 4:

задачи принимаются в период с момента выдачи листка по 1 июня включительно

в период с 26 мая по 1 июня включительно одному студенту разрешается сдать не более шести задач

Индивидуальные домашние задания

1-2 модули

ИДЗ-1

ИДЗ-2

ИДЗ-3

ИДЗ-4

3-4 модули

ИДЗ-5

ИДЗ-6

ИДЗ-7

ИДЗ-8

ИДЗ-9

Лабораторные работы

Для каждой лабораторной работы файл с условием представляет собой IPython ноутбук. Выполнять работу нужно прямо в нём. При этом, пожалуйста, не удаляйте условия задач. Задание должно быть выполнено на языке Python 3.

ЛР-1

ЛР-2

ЛР-3

Контрольные работы

2-й модуль

Дата-время: 18 ноября, 18:10

Продолжительность работы: 120 минут

Организационная информация по проведению контрольной

Разрешения на контрольной: иметь с собой только ручку и электронное устройство с единственной функцией "калькулятор".

Условия задач с контрольной

Ниже приводится список задач, рекомендуемых к прорешиванию для подготовки к контрольной. Задачи в списке рассортированы по темам, номера с пометкой "П" даны по задачнику Проскурякова, номера с пометкой "К" — по задачнику Кострикина.

  • Решение систем линейных уравнений: П 82–89, 567–581, 689–704, 712–720; К 8.1, 8.2
  • Действия с матрицами: П 788–798, 801–805, 822–825, 836–845, 861–870, 937; К 17.1–17.5, 17.7, 18.3, 18.8–18.11
  • Перестановки: П 123–128, 151–161, 176–178; К 3.1–3.4, 3.6, 3.7
  • Определители произвольного порядка: определение: П 188–206, К 10.1–10.4
  • Свойства определителей произвольного порядка: П 212–215, 224–232 ; К 11.1–11.4, 11.6–11.7
  • Вычисление определителей произвольного порядка: П 238–240, 257–269, 279, 316

Также стоит обратить внимание на задачи по перечисленным выше темам с аналогичных контрольных прошлых лет.

4-й модуль

Дата-время: 22 апреля, 16:40

Продолжительность работы: 120 минут

Организационная информация по проведению контрольной

Разрешения на контрольной: иметь с собой только ручку и электронное устройство с единственной функцией "калькулятор".

Условия задач с контрольной

Ниже приводится список задач, рекомендуемых к прорешиванию для подготовки к контрольной. Задачи в списке рассортированы по темам, номера с пометкой "П" даны по задачнику Проскурякова, номера с пометкой "К" — по задачнику Кострикина, номера с пометкой "КК" — по задачнику Ким–Крицкова.

  • Задание подпространств системами линейных уравнений: П 1312, 1313, К 35.16
  • Матрицы перехода, преобразование координат вектора при замене базиса: П 1280–1283, К 34.10–34.12; задача 2 из ИДЗ-5
  • Сумма и пересечение двух подпространств векторного пространства, разложение в прямую сумму подпространств: П 1317, 1318, 1320–1322; К 35.14, 35.15; задачи 3–5 из ИДЗ-5
  • Линейные отображения и их матрицы: П 1434–1438, 1441–1446, 1449, 1450; К 36.3, 36.4, 39.15, 39.16; задачи 1,2 из ИДЗ-6
  • Нахождение базиса ядра и базиса образа линейного отображения, приведение матрицы линейного отображения к диагональному виду с единицами и нулями на диагонали: К 39.5; задачи 3,4 из ИДЗ-6
  • Линейные функции и двойственные базисы: К 36.9, 36.10; задача 5 из ИДЗ-6
  • Билинейные и квадратичные формы, их матрицы: К 37.6, 37.8, 37.10, 38.15, 38.16
  • Приведение квадратичной формы к каноническому и нормальному виду: П 1175–1186; К 38.8, 38.18(а–г)
  • Исследование квадратичных форм на положительную и отрицательную определённость, а также определение нормального вида в зависимости от значений параметра: П 1212–1216; К 38.11(а–г), 38.14(а,б) + для каждого номера определить нормальный вид квадратичной формы в зависимости от значений параметра
  • Метод ортогонализации Грама-Шмидта: П 1357–1363; К 43.7(а–г), 43.15(а–в)
  • Ортогональная проекция вектора на подпространство: П 1370–1372; К 43.19(а–в)
  • Объём k-мерного параллелепипеда: К 43.36
  • Расстояние от точки до линейного многообразия: П 1374; К 43.21(а–г), 51.7
  • Векторное и смешанное произведения в R^3: КК 25.5, 25.7, 25.17, 25.18, 25.24, 25.35–25.38, 25.49, 25.59, 25.61
  • Уравнения прямых и плоскостей в трёхмерном пространстве: КК 26.28–26.37, 26.39–26.47, 26.50, 27.34, 27.39–27.42, 31.1–31.3, 31.5–31.8, 31.21–31.25, 31.27–31.32
  • Взаимное расположение прямых и/или плоскостей в трёхмерном пространстве: КК 27.29, 27.32, 31.13–31.15, 31.18, 31.19
  • Метрические задачи в трёхмерном пространстве: КК 25.58, 32.28–32.31, 32.34, 32.35, 32.37, 32.38–32.40

Также стоит обратить внимание на задачи по перечисленным выше темам с аналогичных контрольных прошлых лет.

Коллоквиумы

2-й модуль

Даты: 8-9 декабря

Организационная информация по проведению коллоквиума

Материалы для подготовки:

Список определений и формулировок

Список вопросов на доказательство

Формат проведения:

Этап 1 (2 балла). Студенту выдаются 5 определений из списка, на написание которых даётся 10 минут, после чего один из принимающих проверяет результат. Если результат меньше 4 (из 5), то коллоквиум завершается с оценкой 0. Если результат не меньше 4, то студент переходит на этап 2, получив за этап 1 оценку N-3, где N — число правильно отвеченных определений.

Этап 2 (8 баллов). Студент вытягивает билет с 4 вопросами на доказательство. На написание первых двух вопросов даётся 25 минут, после чего начинается опрос. Остальные вопросы обсуждаются с принимающим по мере готовности.

4-й модуль

Дата: 18 мая

Организационная информация по проведению коллоквиума будет позже

Материалы для подготовки:

Список определений и формулировок

Список вопросов на доказательство

Экзамены

Формат проведения: письменная работа

Разрешения на экзамене: иметь с собой только ручку и электронное устройство с единственной функцией "калькулятор".

2-й модуль

Дата-время: 20 декабря, 11:10

Условия задач с экзамена

Организационная информация по проведению экзамена

Материалы для подготовки к экзамену:

I: список определений и формулировок

II: список задач для подготовки к 1-й контрольной

III: приводимые ниже задачи (рассортированы по темам, номера с пометкой "П" даны по задачнику Проскурякова, номера с пометкой "К" — по задачнику Кострикина):

  • Комплексные числа: К 20.1, 20.2, 20.4, 20.11, 21.1, 21.2, 21.9, 22.7
  • Линейная зависимость в векторных пространствах: П 639–644, 646–650, 652–655, 1824–1828; К 34.2, 34.3
  • Линейные комбинации, линейные оболочки: П 665–669, 679–681 (база = максимальная линейно независимая подсистема)
  • Подпространства, базис, размерность: П 1297–1304, 1308, 1310–1313; К 34.14, 35.2, 35.3, 35.7(а,в,г), 35.8, 35.11, 35.16
  • Фундаментальная система решений однородной системы линейных уравнений: П 724–732, К 8.4
  • Ранг матрицы: П 612, 613, 619–622, 623–628; К 7.1–7.3, 7.5–7.7, 7.10, 7.12

Также стоит обратить внимание на задачи по перечисленным выше темам с аналогичных экзаменов прошлых лет.

Комментарий к I. Данный список продолжает список определений и формулировок для коллоквиума. В качестве одного из заданий экзаменационной работы может быть предложено дать какое-нибудь определение или сформулировать какую-нибудь теорему из списка, также могут быть задачи на применение теории (определений/формулировок) в конкретных примерах. Наконец, знание определений и формулировок может просто помочь при решении тех или иных задач экзаменационной работы.

4-й модуль

Дата-время: 17 июня, 16:40

Материалы для подготовки к экзамену:

I: список определений и формулировок

II: список задач для подготовки ко 2-й контрольной

III: приводимые ниже задачи (рассортированы по темам, номера с пометкой "П" даны по задачнику Проскурякова, номера с пометкой "К" — по задачнику Кострикина, номера с пометкой "КК" — по задачнику Ким–Крицкова):

  • Изменение матрицы линейного оператора при переходе к другому базису: П 1452--1454; К 39.19--39.21
  • Собственные векторы и собственные значения линейных операторов: П 1465--1474; К 40.15
  • Диагонализуемость линейных операторов: П 1479--1483; К 40.16
  • Самосопряжённые линейные операторы, приведение квадратичной формы к главным осям: К 45.4, 45.19, П 1243–1246, 1248–1262, 1585, 1586
  • Ортогональные линейные операторы: К 46.6, П 1571–1575
  • Сингулярное разложение матриц и теорема о низкоранговом приближении (примеры)
  • Нахождение прямоугольной декартовой системы координат, в которой уравнение данной кривой или поверхности 2-го порядка принимает канонический вид, и определение типа данной кривой или поверхности (КК 35.24, 35.27, 38.10–38.12)
  • Нахождение жордановой формы линейного оператора и соответствующего жорданова базиса (К 41.1, 41.10, П 1530–1536)

Также стоит обратить внимание на задачи по перечисленным выше темам с аналогичных экзаменов прошлых лет.

Комментарий к I. Данный список продолжает список определений и формулировок для коллоквиума. В качестве одного из заданий экзаменационной работы может быть предложено дать какое-нибудь определение или сформулировать какую-нибудь теорему из списка, также могут быть задачи на применение теории (определений/формулировок) в конкретных примерах. Наконец, знание определений и формулировок может просто помочь при решении тех или иных задач экзаменационной работы.

Ведомости текущего контроля

1-2 модули

Результаты проверки больших домашних заданий

235 236 237 238 239 2310 2311 2312 Э231 Э232

Э233

Результаты сдачи задач из листков

235 236 237 238 239 2310 2311 2312 Э231 Э232

Э233

Результаты 1-й контрольной работы

235 236 237 238 239 2310 2311 2312 Э231 Э232 Э233

Сводные таблицы с оценками

235 236 237 238 239 2310 2311 2312 Э231 Э232 Э233

3-4 модули

Результаты проверки больших домашних заданий

235 236 237 238 239 2310 2311 2312 Э231 Э232

Э233

Результаты сдачи задач из листков

235 236 237 238 239 2310 2311 2312 Э231 Э232

Э233

Результаты 2-й контрольной работы

235 236 237 238 239 2310 2311 2312 Э231 Э232 Э233

Сводные таблицы с оценками

235 236 237 238 239 2310 2311 2312 Э231 Э232 Э233

Кстати

Единственная (на момент прочтения этого курса) литературная форма множественного числа слова вектор — это ве́кторы.

Ссылки

Telegram-канал семинаров в группе 235

Литература

Учебники

  • А.И. Кострикин. Введение в алгебру. Часть I. Основы алгебры. М.: Физматлит, 1994
  • А.И. Кострикин. Введение в алгебру. Часть II. Линейная алгебра. М.: Физматлит, 2000
  • Э.Б. Винберг. Курс алгебры. М.: Факториал, 1999 (или любое последующее издание)
  • А.А. Михалёв, А.В. Михалёв. Начала алгебры. Часть I. М.: Интернет-университет информационных технологий, 2005

Сборники задач

  • И.В. Проскуряков. Сборник задач по линейной алгебре (любое издание, например М.: БИНОМ, 2005)
  • Сборник задач по алгебре под редакцией А.Н. Кострикина. Новое издание. М.: МЦНМО, 2009
  • Г.Д. Ким, Л.В. Крицков. Алгебра и аналитическая геометрия. Теоремы и задачи. Том I. М.: "Планета знаний", 2007