Алгебра на ПМИ 2022/2023 (основной поток)

Материал из Wiki - Факультет компьютерных наук
Перейти к: навигация, поиск

Telegram-канал: https://t.me/Alg_AMI_22_23_osn

Преподаватели и учебные ассистенты

Группа БПМИ225 БПМИ226 БПМИ227 БПМИ228 БПМИ229 БПМИ2210 БПМИ2211 БПМИ2212
Лектор Роман Авдеев
Семинарист Роман Авдеев Артём Максаев Антон Шафаревич Виктор Лопаткин Михаил Хрыстик Сергей Гайфуллин
Ассистент Алина Августёнок Тагир Хамитов Тимур Лиджиев Георгий Тарасов Мария Марченко Демушкин Игорь Амина Каракотова Родион Черномордин

Порядок формирования оценок

Итоговая оценка вычисляется следующим образом:

Oитоговая = 0,3 * Одз + 0,2*Ок/р + 0,5*Оэкз.

Округление производится только для итоговой оценки. Способ округления — арифметический.

Краткое содержание лекций

Лекция 1 (5.04.2023) [видеозапись]. Бинарные операции. Полугруппы, моноиды, группы, коммутативные (абелевы) группы. Порядок группы. Примеры групп. Подгруппы. Описание всех подгрупп в группе целых чисел по сложению. Циклические подгруппы. Порядок элемента группы. Связь между порядком элемента и порядком порождаемой им циклической подгруппы. Циклические группы.

Лекция 2 (7.04.2023) [видеозапись]. Левые (правые) смежные классы группы по подгруппе, разбиение группы на левые (правые) смежные классы. Индекс подгруппы, теорема Лагранжа. Пять следствий из теоремы Лагранжа. Нормальные подгруппы. Факторгруппа группы по нормальной подгруппе.

Лекция 3 (12.04.2023) [видеозапись]. Гомоморфизмы групп, примеры, простейшие свойства. Изоморфизм групп, изоморфные группы. Отношение изоморфности на множестве всех групп. Ядро и образ гомоморфизма групп, их свойства. Теорема о гомоморфизме для групп. Примеры.

Лекция 4 (19.04.2023) [видеозапись]. Классификация циклических групп с точностью до изоморфизма. Прямое произведение групп и разложение группы в прямое произведение подгрупп. Разложение конечной циклической группы. Примарные абелевы группы. Теорема о разложении конечной абелевой группы в прямое произведение примарных циклических групп (формулировка). Начало доказательства единственности.

Лекция 5 (21.04.2023) [видеозапись]. Завершение доказательства единственности в теореме о разложении конечной абелевой группы. Экспонента конечной абелевой группы, критерий цикличности. Понятие кольца, примеры. Коммутативные кольца. Обратимые элементы, делители нуля, нильпотенты. Поля. Критерий того, что кольцо вычетов является полем.

Конспект, включающий в себя материал лекций про группы

Лекция 6 (26.04.2023) [видеозапись]. Подкольца, подполя. Идеалы в кольце. Главные идеалы и идеалы, порождаемые подмножеством коммутативного кольца. Факторкольцо кольца по идеалу. Гомоморфизмы, изоморфизмы колец. Ядро и образ гомоморфизма колец. Теорема о гомоморфизме для колец. Кольцо K[x] многочленов от одной переменной над полем.

Лекция 7 (10.05.2023) [видеозапись]. Деление с остатком в кольце K[x]. Наибольший общий делитель двух многочленов, теорема о его существовании и линейном выражении. Неприводимые многочлены. Факториальность кольца K[x]. Теорема о том, что K[x] является кольцом главных идеалов.

Лекция 8 (12.05.2023) [видеозапись]. Факторкольцо K[x]/(h), его базис как векторного пространства над полем K. Критерий того, что факторкольцо K[x]/(h) является полем. Присоединение корня неприводимого многочлена. Лексикографический порядок на одночленах от нескольких переменных. Лемма о конечности убывающих цепочек одночленов. Старший член ненулевого многочлена. Лемма о старшем члене.

Конспект, включающий в себя материал лекций про кольца

Лекция 9 (17.05.2023) [видеозапись]. Элементарная редукция многочлена относительно ненулевого многочлена. Нередуцируемые многочлены. Лемма о конечности цепочек элементарных редукций. Остаток многочлена относительно заданной системы многочленов. Системы Грёбнера. Характеризация систем Грёбнера в терминах цепочек элементарных редукций. S-многочлены. Критерий Бухбергера.

Лекция 10 (24.05.2023) [видеозапись]. Базис Грёбнера идеала, теорема о трёх эквивалентных условиях. Решение задачи вхождения многочлена в идеал. Лемма о конечности цепочек одночленов, в которых каждый следующий одночлен не делится ни на один из предыдущих. Теорема Гильберта о базисе идеала. Алгоритм Бухбергера построения базиса Грёбнера идеала. Редуцируемость к нулю S-многочлена двух многочленов с взаимно простыми старшими членами.

Конспект, включающий в себя материал лекций про базисы Грёбнера

Лекция 11 (26.05.2023) [видеозапись]. Поля. Характеристика поля. Расширение полей, его степень. Степень композиции двух расширений. Присоединение корня неприводимого многочлена. Существование конечного расширения исходного поля, в котором заданный многочлен (а) имеет корень; (б) разлагается на линейные множители. Алгебраические и трансцендентные элементы. Минимальный многочлен алгебраического элемента и его свойства. Поле, порождённое алгебраическим элементом.

Конспект, включающий в себя материал лекций про поля

Лекция 12 (31.05.2023) [видеозапись]. Порядок конечного поля. Общая конструкция конечных полей. Поле из четырёх элементов. Автоморфизм Фробениуса. Существование конечного поля, порядок которого — степень простого числа. Цикличность мультипликативной группы конечного поля. Реализация конечного поля как факторкольца кольца многочленов над полем вычетов.

Лекция 13 (7.06.2023) [видеозапись]. Единственность конечного поля заданного порядка. Описание подполей конечного поля. Коды над конечным алфавитом. Расстояние Хэмминга. Коды, исправляющие t ошибок. Минимальное расстояние кода. Теорема о связи минимального расстояния кода с числом ошибок, которые он может исправлять.

Лекция 14 (9.06.2023) [видеозапись]. Линейные коды. Проверочная матрица. Связь минимального расстояния линейного кода с его проверочной матрицей. Бинарный код Хэмминга, его минимальное расстояние и число ошибок, которые он может исправлять. Неравенство Синглтона. Код Рида–Соломона и его минимальное расстояние. Коды БЧХ. Теорема о числе ошибок, исправляемых кодом БЧХ. Оценка на размерность кода БЧХ.

Лекция 15 (14.06.2023) [видеозапись]. Элементы криптографии с открытым ключом. Задача дискретного логарифмирования. Протокол Диффи–Хеллмана обмена ключами. Криптосистема Эль-Гамаля. Эллиптические кривые. Структура группы на эллиптической кривой. Общие свойства эллиптических кривых над конечными полями.

Листки с задачами

Задачи к лекции 1

Задачи к лекции 2

Задачи к лекции 3

Задачи к лекции 4

Задачи к лекции 5

Задачи к лекции 6

Задачи к лекции 7

Задачи к лекции 8

Задачи к лекции 9

Задачи к лекции 10

Задачи к лекции 11

Задачи к лекции 12

Задачи к лекции 13

Задачи к лекции 14

Задачи к лекции 15

Домашние задания

ДЗ-1

ДЗ-2

ДЗ-3

ДЗ-4

ДЗ-5

ДЗ-6

ДЗ-7

ДЗ-8

ДЗ-9

Контрольная работа

Дата-время: 13 июня, 16:40, продолжительность — 2 часа

Организационная информация по проведению контрольной: очный формат; дистанционный формат

Разрешения на контрольной: иметь с собой только ручку и электронное устройство с единственной функцией "калькулятор"

Условия задач с контрольной

Темы задач на контрольной работе

  • Порядки элементов и подгруппы в конечных абелевых группах [60.39, 60.40, 60.42, 60.43, 60.45] ("прямая сумма" = "прямое произведение")
  • Алгоритм Евклида и линейное представление НОД в кольце многочленов [25.2, 25.3, 25.7, ещё задачи]
  • Разложение многочленов на неприводимые множители над полями R, C и Z_p [27.1, 27.2, ещё примеры]
  • Базисы Грёбнера и их приложения [примеры, задачи 5,8 из листка 10 и задачи 1,2,3 из ДЗ-7]
  • Минимальные многочлены и вычисления в конечных расширениях полей [67.3, задачи 4,5 из листка 8, задача 1 из ДЗ-6, задачи 4,5 из листка 11 и задача 1 из ДЗ-8]
  • Вычисления в конечных полях [примеры]

Для каждой темы в скобках указаны задачи, рекомендуемые к прорешиванию в качестве тренировки (номера даны по Сборнику задач по алгебре под редакцией А.И. Кострикина).

Также стоит обратить внимание на задачи, предлагавшиеся на аналогичных контрольных прошлых лет.

Экзамен

Формат экзамена: устный

Студент вытягивает билет с 4 вопросами из программы (два вопроса по 2 балла и ещё два по 3 балла; все вопросы на доказательства!). На подготовку к ответу даётся 50 минут, после чего происходит разговор с принимающим, по результатам которого выставляется оценка. Знание только определений и формулировок даёт не более 0,5 балла за вопрос и, следовательно, не более 2 баллов в сумме.

Список вопросов для подготовки к экзамену

Ведомости текущего контроля

225 226 227 228 229 2210 2211 2212

Литература

  • Э.Б. Винберг. Курс алгебры. М.: Факториал Пресс, 2002.
  • А.И. Кострикин. Введение в алгебру. Основы алгебры. М.: Наука. Физматлит, 1994.
  • А.И. Кострикин. Введение в алгебру. Основные структуры алгебры. М.: Наука. Физматлит, 2000.
  • Сборник задач по алгебре под редакцией А.Н. Кострикина. Новое издание. М.: МЦНМО, 2009.
  • Р. Лидл, Г. Нидеррайтер. Конечные поля (2 тома). М.: Мир, 1988.
  • И.В. Аржанцев. Базисы Грёбнера и системы алгебраических уравнений. М.: МЦНМО, 2003.