Алгебра на ПМИ 2019/2020 (пилотный поток)

Материал из Wiki - Факультет компьютерных наук
Перейти к: навигация, поиск

Преподаватели и учебные ассистенты

Группа БПМИ191 БПМИ192 БПМИ194
Лектор Иван Владимирович Аржанцев
Семинарист Сергей Александрович Гайфуллин Галина Анатольевна Калеева Иван Владимирович Аржанцев
Ассистент Анастасия Дроздова Никита Андреев Марина Каминская

Расписание консультаций

Преподаватель/ассистент понедельник вторник среда четверг пятница
1
Иван Владимирович Аржанцев 18:10–19:10
2
Сергей Александрович Гайфуллин 10:30–12:00
3
Галина Анатольевна Калеева 19:00–20:00 19:00–20:00 18 июня
4
Марина Каминская 17:00–18:00
5
Анастасия Дроздова 13:40–15:00
6
Никита Андреев 16:40–18:00

Порядок формирования оценок

Итоговая оценка выражается следующим образом:

Oитоговая = 0,3 * Одз + 0,2 * Ок/р + 0,5 * Оэкз.

Округление производится для итоговой оценки. Способ округления — арифметический.

Краткое содержание лекций

В этом разделе выложены конспекты всех лекций курса. Содержание этих конспектов может незначительно отличаться от материала, фактически прочитанного на лекциях.

Лекция 1 (8.04.2020). Полугруппы и группы: основные определения и примеры. Группы подстановок и группы матриц. Подгруппы. Порядок элемента и циклические подгруппы. Смежные классы и индекс подгруппы. Теорема Лагранжа и её следствия.

Лекция 2 (15.04.2020). Нормальные подгруппы. Факторгруппы и теорема о гомоморфизме. Центр группы. Прямое произведение групп. Факторизация по сомножителям. Разложение конечной циклической группы.

Лекция 3 (22.04.2020). Конечно порождённые и свободные абелевы группы. Подгруппы свободных абелевых групп. Теорема о согласованных базисах. Алгоритм приведения целочисленной матрицы к диагональному виду.

Лекция 4 (29.04.2020). Строение конечно порождённых абелевых групп. Конечные абелевы группы. Экспонента конечной абелевой группы. Криптография с открытым ключом. Задача дискретного логарифмирования. Система Диффи–Хеллмана обмена ключами. Криптосистема Эль–Гамаля.

Лекция 5 (06.05.2020). Действие группы на множестве. Орбиты и стабилизаторы. Транзитивные и свободные действия. Три действия группы на себе. Теорема Кэли. Классы сопряжённости.

Лекция 6 (13.05.2020). Кольца. Делители нуля, обратимые элементы, нильпотенты и идемпотенты. Поля и алгебры. Идеалы и факторкольца. Теорема о гомоморфизме. Центр алгебры матриц над полем. Простота алгебры матриц над полем. Многочлены от одной переменной над полем: наибольший общий делитель, неприводимые многочлены, однозначность разложения на множители и описание идеалов.

Лекция 7 (20.05.2020). Элементарные симметрические многочлены. Основная теорема о симметрических многочленах. Лексикографический порядок. Теорема Виета. Дискриминант многочлена.

Лекция 8 (27.05.2020). Примеры полей. Характеристика поля. Расширения полей, алгебраические и трансцендентные элементы. Минимальные многочлен. Конечное расширение и его степень. Присоединение корня многочлена. Поле разложения многочлена: существование и единственность.

Лекция 9 (03.06.2020). Конечные поля. Простое подполе и порядок конечного поля. Автоморфизм Фробениуса. Теорема существования и единственности для конечных полей. Поле из четырех элементов. Цикличность мультипликативной группы. Неприводимые многочлены над конечным полем. Подполя конечного поля.

Дополнительные лекции

Базисы Гребнера, теорема Гильберта в базисе (25.05.2020)

Теория кодирования (04.06.2020)

Листки с задачами

Листок с задачами к лекции N содержит в себе N-е домашнее задание.

Задачи к лекции 1

Задачи к лекции 2

Задачи к лекции 3

Задачи к лекции 4

Задачи к лекции 5

Задачи к лекции 6

Задачи к лекции 7

Задачи к лекции 8

Задачи к лекции 9

Задачи к дополнительной лекции по теории кодирования

Контрольная работа

Контрольная работа состоится 8 июня с 12.10 до 13.30.

Пользоваться можно любыми письменными и печатными материалами, а также непрограммируемыми калькуляторами.

Вариант контрольной работы 8 июня 2020

Переписывание контрольной состоялось 20 июня. Если вам необходим показ работы, напишите личное письмо лектору курса и договоритесь о времени индивидуального показа работы.

Экзамен

Группа 191: 22 июня

Группа 192: 22 июня

Группа 194: 22 июня

Программа экзамена

Ведомости текущего контроля

191 192 194

Ссылка на classroom

Литература

  • Э.Б. Винберг. Курс алгебры. М.: Факториал Пресс, 2002.
  • А.И. Кострикин. Введение в алгебру. Основы алгебры. М.: Наука. Физматлит, 1994.
  • А.И. Кострикин. Введение в алгебру. Основные структуры алгебры. М.: Наука. Физматлит, 2000.
  • Сборник задач по алгебре под редакцией А.Н. Кострикина. Новое издание. М.: МЦНМО, 2009.