Машинное обучение 1/2019 2020

Материал из Wiki - Факультет компьютерных наук
Перейти к: навигация, поиск

О курсе

borderless

Курс читается для студентов 3-го курса ПМИ ФКН ВШЭ в 1-2 модулях.

Проводится с 2016 года.

Лектор: Соколов Евгений Андреевич

Лекции проходят по пятницам, 12:10 - 13:30, ауд. R404 (Покровский бульвар, 11).




Полезные ссылки

Карточка курса и программа

Репозиторий с материалами на GitHub

Видеозаписи лекций 18/19 года

Почта для сдачи домашних заданий (на самом деле задания сдаются в AnyTask, но если он не работает, то присылайте на почту): hse.cs.ml+<номер группы>@gmail.com (например, hse.cs.ml+171@gmail.com)

Канал в telegram для объявлений: https://t.me/joinchat/AAAAAEtiwm9A8i-78LNcKQ

Чат в telegram для обсуждений (предназначение чата до конца не ясно, вопросы может быть правильнее задавать в чатах групп): https://t.me/joinchat/A5rlQBUrWTeXl7eBbnyBcQ

Ссылка на курс в Anytask: https://anytask.org/course/537

Таблица с оценками

Оставить отзыв на курс: форма

Вопросы по курсу можно задавать на почту курса, а также в телеграм лектору (esokolov@) или семинаристу. Вопросы по материалам лекций/семинаров и по заданиям лучше всего оформлять в виде Issue в github-репозитории курса.

Семинары

Группа Преподаватель Учебный ассистент
171 (МОП) Зиннурова Эльвира Альбертовна Виктор Куканов
172 (МОП) Каюмов Эмиль Марселевич Соня Дымченко
173 (ТИ) Хрушков Павел Вадимович Роман Соколов
174 (АДИС) Кохтев Вадим Михайлович Евгений Алаев
175 (РС) Волохова Александра Константиновна Ярослав Пудяков
176 (РС) Яшков Даниил Дмитриевич Николай Пальчиков
Магистратура ФТиАД Рысьмятова Анастасия Александровна Олег Дешеулин

Консультации

Правила выставления оценок

В курсе предусмотрено несколько форм контроля знания:

  • Самостоятельные работы на семинарах, проверяющие знание основных фактов с лекций
  • Практические домашние работы на Python
  • Письменная контрольная работа
  • Письменный экзамен

Итоговая оценка вычисляется на основе оценки за работу в семестре и оценки за экзамен:

Итог = Округление(0.15 * ПР + 0.4 * ДЗ + 0.15 * КР + 0.3 * Э)

ПР — средняя оценка за самостоятельные работы на семинарах

ДЗ — средняя оценка за практические домашние работы на Python

КР — оценка за контрольную работу

Э — оценка за экзамен

Округление арифметическое.

Правила сдачи заданий

За каждый день просрочки после мягкого дедлайна снимается 1 балл. После жёсткого дедлайна работы не принимаются. Даже при опоздании на одну секунду. Сдавайте заранее. Есть исключения, о них написано ниже.

При обнаружении плагиата оценки за домашнее задание обнуляются всем задействованным в списывании студентам, а также подаётся докладная записка в деканат. Следует помнить, что при повторном списывании деканат имеет право отчислить студента.

При наличии уважительной причины пропущенную проверочную можно написать позднее, а дедлайн по домашнему заданию может быть перенесён. Дедлайн по домашнему заданию переносится на количество дней, равное продолжительности уважительной причины. Решение о том, является ли причина уважительной, принимает исключительно учебный офис.

Лекции

Ко всем конспектам на GitHub есть исходники. Исправления и дополнения всячески приветствуются!

Лекция 1 (6 сентября). Введение в машинное обучение. Основные термины, постановки задач и примеры применения. [Конспект]

Лекция 2 (13 сентября). Линейная регрессия. Метрики качества регрессии. Градиентный спуск и способы оценивания градиента. Продвинутые градиентные методы. [Конспект]

Лекция 3 (20 сентября). Переобучение и регуляризация. Разреженные линейные модели. Квантильная регрессия. Подготовка признаков. [Конспект]

Лекция 4 (27 сентября). Линейная классификация. Отступ и верхние оценки на пороговую функцию потерь. Метрики качества классификации. [Конспект]

Лекция 5 (4 октября). Линейная классификация. Логистическая регрессия и оценки вероятности классов. Метод опорных векторов. [Конспект]

Лекция 6 (11 октября). Многоклассовая классификация, сведение к бинарным задачам. Многоклассовая логистическая регрессия. Классификация с пересекающимися классами. Метрики качества многоклассовой классификации. [Конспект]

Лекция 7 (18 октября). Решающие деревья. Жадный алгоритм построения. Выбор лучшего разбиения с помощью критерия информативности. Критерии информативности для регрессии и классификации. Учёт пропусков в деревьях. Решающие деревья и категориальные признаки. [Конспект]

Лекция 8 (1 ноября). Бутстрап и бэггинг. Разложение ошибки на смещение и разброс (bias-variance decomposition). Случайный лес. Вычисление расстояний с помощью лесов. [Конспект]

Лекция 9 (8 ноября). Градиентный бустинг. Регуляризация. Особенности бустинга над деревьями. Взвешивание объектов в градиентном бустинге. [Конспект]

Лекция 10 (15 ноября). Оптимизация второго порядка в градиентном бустинге. Регуляризация деревьев. XGBoost. Стекинг. [Конспект]

Лекция 11 (22 ноября). Обучение без учителя. Кластеризация: метрики качества, K-Means, иерархический и графовый подходы. Визуализация, t-SNE. Обучение представлений. word2vec. [Конспект]

Лекция 12 (29 ноября). Метод главных компонент, его связь с матричными разложениями. Рекомендательные системы: постановка задачи, коллаборативные методы, матричные разложения, контентные методы. [Конспект]

Семинары

Семинар 1. Области применения машинного обучения. Инструменты data scientist'а. Pandas и разведочный анализ данных. [Ноутбук]

Семинар 2. Линейная регрессия. Библиотека scikit-learn. Валидация моделей. Работа с категориальными признаками. [Ноутбук]

Семинар 3. Градиент и его свойства. Векторное дифференцирование. Градиентый спуск, его модификации, практические аспекты. [Конспект] [Ноутбук]

Семинар 4. Предобработка данных. [Конспект] [Ноутбук]

Семинар 5. Метрики качества классификации. AUC-ROC и его прямая оптимизация. [Конспект]

Семинар 6. Оценивание вероятностей классов. Квантильная регрессия [Конспект]

Семинар 7. Решающие деревья. Критерии информативности. Гиперпараметры в деревьях. [Конспект] [Ноутбук]

Семинар 8. Разложение ошибки на смещение и разброс. [Конспект]

Семинар 9. Градиентный бустинг. Вывод формул для сдвигов. Сравнение со случайным лесом. Деревья и экстраполяция данных. [Конспект] [Ноутбук]

Семинар 10. Современные имплементации градиентного бустинга. Блендинг. Подсчёт важностей признаков в композициях. [Ноутбук]

Семинар 11. K-Means. DBSCAN. Иерархическая кластеризация. Сравнение методов кластеризации. Метод главных компонент. [Ноутбук]

Практические задания

За каждый день просрочки после мягкого дедлайна снимается 1 балл. После жёсткого дедлайна работы не принимаются, но есть исключение. В течение семестра каждый студент может не более 2 раз сдать задание после жёсткого дедлайна — в этом случае за каждый день просрочки продолжает вычитаться по одному баллу (если не оговорено иное).

Задание 1. Работа с Pandas и Matplotlib.

Мягкий дедлайн: 15.09.2019 23:59.

Жесткий дедлайн: 17.09.2019 23:59.

[Ноутбук с заданием]

Задание 2. Exploratory Data Analysis и линейная регрессия.

Мягкий дедлайн: 01.10.2019 23:59.

Жесткий дедлайн: 04.10.2019 23:59 (за каждый день просрочки снимается 2 балла).

[Ноутбук с заданием]

Задание 3. Градиентный спуск своими руками.

Мягкий дедлайн: 15.10.2019 07:59.

Жесткий дедлайн: 17.10.2019 23:59.

[Ноутбук с заданием]

Задание 4. Метод опорных векторов, категориальные признаки, калибровка предсказаний и отбор признаков.

Мягкий дедлайн: 11.11.2019 07:59.

Жесткий дедлайн: 13.11.2019 23:59.

[Ноутбук с заданием]

Задание 5. Решающие деревья

Мягкий дедлайн: 22.11.2019 1:59

Жесткий дедлайн: 23.11.2019 23:59

[Ноутбук и модуль с заданием]

Задание 6. Разложение ошибки на смещение и разброс

Мягкий дедлайн: 01.12.2019 8:00

Жесткий дедлайн: 02.12.2019 23:59 (за каждый день просрочки снимается 0.5 балла)

[Ноутбук с заданием]

Задание 7. Градиентный бустинг

Мягкий дедлайн: 16.12.2019 5:59

Жесткий дедлайн: 18.12.2019 5:59 (за каждый день просрочки снимается 0.5 балла)

[Ноутбук с заданием]

Теоретические домашние задания

Теоретические ДЗ не проверяются, но задачи из них могут войти в проверочные работы на семинарах.

Теоретическое домашнее задание 1: линейная регрессия и векторное дифференцирование [ссылка]

Теоретическое домашнее задание 2: линейная классификация [ссылка]

Теоретическое домашнее задание 3: решающие деревья [ссылка]

Теоретическое домашнее задание 4: разложение ошибки на смещение и разброс [ссылка]

Соревнования

Правила участия и оценивания

В соревновании по анализу данных вам предлагается по имеющимся данным решить некоторую задачу, оптимизируя указанную метрику, и отправить ответы для заданного тестового множества. Максимальное количество посылок в сутки ограничено (как правило, разрешается сделать 2 посылки), ближе к концу соревнования вам будем необходимо выбрать 2 посылки, которые вы считаете лучшими. Тестовые данные делятся на публичные и приватные в некотором соотношении, на основе которых строятся публичный и приватный лидерборды соответственно, при этом публичный лидерборд доступен в течение всего соревнования, а приватный строится после его окончания для выбранных вами посылок.

В лидербордах каждого из соревнований присутствуют несколько базовых решений (бейзлайнов), каждое из которых соответствует определённой оценке. Например, для получения оценки не ниже 8 баллов необходимо, чтобы ваше решение на приватном лидерборде оказалось лучше соответствующего бейзлайна. Далее для студента, преодолевшего бейзлайн на N_1 баллов, но не преодолевшего бейзлайн на N_2 балла, итоговая оценка за соревнование рассчитывается по равномерной сетке среди всех таких студентов в зависимости от места в приватном лидерборде среди них; если быть точными, то по следующей формуле:

N_2 - (N_2 - N_1) * i / M,

где M — количество студентов (из всех студентов, изучающих курс), преодолевших бейзлайн на N_1 баллов, но не преодолевших бейзлайн на N_2 балла;

i — место (начиная с 1) студента в приватном лидерборде среди всех таких студентов.

Единственное исключение из формулы — студенты, преодолевшие самый сильный бейзлайн, получают прибавку 1/M к своей оценке.

Чтобы вас не пропустили при проверке решений соревнования, необходимо использовать следующий формат для имени команды (вкладка Team):

«Имя Фамилия номер_группы»

В течение 3 суток после окончания соревнования в соответствующее задание на anytask необходимо прислать код, воспроизводящий ответы для посылки, фигурирующей в приватном лидерборде. При оформлении кода предполагайте, что данные лежат рядом с ним в папке data, а в результате выполнения кода ответы должны быть записаны в файл solution-N-Username.csv, где N — номер соревнования, Username — ваша фамилия. У нас должна быть возможность запустить код и получить те же ответы, что и в вашей посылке, — в частности, это означает, что:

1. Если вы отправляете файл *.py, мы будем запускать его при помощи команды python *.py в вышеуказанном предположении о местонахождении данных.

2. Если вы отправляете ноутбук *.ipynb, мы последовательно запустим все ячейки ноутбука и будем ожидать в результате его работы формирование файла с ответами.

3. Если вы отправляете код с использованием другого языка программирования, в том же письме направьте нам инструкцию по его запуску с тем, чтобы получить тот же файл с ответами.

В случае отсутствия кода, воспроизводящего результат, в установленный срок студенту выставляется 0 в качестве оценки за соревнование. Студенты, попавшие в топ-5 согласно приватному лидерборду, смогут получить бонусные баллы, если в течение недели после окончания соревнования пришлют на почту курса отчет о получении решения, фигурирующего в приватном лидерборде. Если не оговорено иное, использовать любые внешние данные в соревнованиях запрещено. Под внешними данными понимаются размеченные данные, где разметка имеет прямое отношение к решаемой задаче. Грубо говоря, сборник текстов с википедии не считается внешними данными.

Соревнование 1: Определение категории товара

Соревнование на бонусные баллы, не входит в основную формулу оценки

Дата выдачи: 9.11.2019

Срок окончания соревнования: 11.12.2019 23:59MSK

Срок отправки кода: 14.12.2019 23:59MSK

Бейзлайн на 4 балла

Ссылка на участие в соревновании

Бонусы за соревнования

За успешное участие в соревнованиях по анализу данных могут быть выставлены бонусные баллы, которые можно прибавить к оценке за любое практическое или теоретическое домашнее задание, а также за самостоятельную работу. Под успешным участием понимается попадание в топ-10% мест; если соревнование особо сложное и крупное, может рассматриваться и попадание в топ-20% мест. Конкретное число баллов определяется преподавателями и зависит от сложности соревнования и занятого места. За одно соревнование можно получить не более 5 баллов. Для получения оценки необходимо предоставить краткий отчёт о решении задачи.

Контрольная работа

Контрольная работа состоится на семинарах 6 декабря (вторая пара).

В варианте будут два теоретических вопроса и две задачи (возможно, будут также дополнительные задачи на бонусные баллы, для получения максимальной оценки за контрольную их решать не потребуется). Теоретические вопросы будут затрагивать материалы всех лекций и семинаров по темам до градиентного бустинга включительно. Основные задачи будут затрагивать все темы, которые затрагивались в теоретических домашних заданиях (линейные модели, деревья, разложение ошибки на смещение и разброс).

Вопросы для подготовки

Экзамен

[Вопросы для подготовки]

Экзамен состоится 25 декабря с 10:00 до 11:30 в R503. В варианте будут два теоретических вопроса и две задачи, у всех будут равные веса.

Полезные материалы

Книги

  • Hastie T., Tibshirani R, Friedman J. The Elements of Statistical Learning (2nd edition). Springer, 2009.
  • Bishop C. M. Pattern Recognition and Machine Learning. Springer, 2006.
  • Mohri M., Rostamizadeh A., Talwalkar A. Foundations of Machine Learning. MIT Press, 2012.
  • Murphy K. Machine Learning: A Probabilistic Perspective. MIT Press, 2012.
  • Mohammed J. Zaki, Wagner Meira Jr. Data Mining and Analysis. Fundamental Concepts and Algorithms. Cambridge University Press, 2014.
  • Willi Richert, Luis Pedro Coelho. Building Machine Learning Systems with Python. Packt Publishing, 2013.

Курсы по машинному обучению и анализу данных

Страницы предыдущих лет

2018/2019 учебный год

2017/2018 учебный год

2016/2017 учебный год