Математический анализ - 2 (2023/24)

Материал из Wiki - Факультет компьютерных наук
Перейти к: навигация, поиск

Преподаватели и учебные ассистенты

Группы БПМИ225 БПМИ226 БПМИ227 БПМИ228 БПМИ229 БПМИ2210 БЭАД221 БЭАД222 БЭАД223
Лектор Зароднюк А.В.
Семинаристы Устинов А.В. Платонова К.С. Платонова К.С. Колесниченко Е.Ю. Чанга М.Е. Радомский А.О. Султанов А.Р. Зароднюк А.В. Чанга М.Е.
Ассистенты Гриценко Дмитрий Нигмазмянов Тимур Стамбеков Алмасбек Дробышевский Илья Гвоздева Дарья Гриценко Дмитрий Судаков Илья Коротков Антон Андрян Тигран
Ассистент лектора Числова Алёна


Ведомость

БПМИ225 БПМИ226 БПМИ227 БПМИ228 БПМИ229 БПМИ2210 БЭАД221 БЭАД222 БЭАД223


Сводная таблица с оценками по ДЗ

БПМИ225 БПМИ226 БПМИ227 БПМИ228 БПМИ229 БПМИ2210 БЭАД221 БЭАД222 БЭАД223


Формула оценки

Итоговая оценка = 0.13 * ДЗ + 0.16 * КЛ1 + 0.16 * КЛ2 + 0.2 * КР + 0.35 * Э,
где ДЗ = min (10; средняя оценка за все домашние задания + О_сем),

  • О_сем - дополнительный балл в размере 0, 0.5 или 1, который семинарист может выставить студенту за активное участие на семинарах,
  • КЛ1 - оценка за коллоквиум 1,
  • КЛ2 - оценка за коллоквиум 2,
  • КР — оценка за контрольную работу,
  • Э — оценка за экзамен.

Округление арифметическое. Итоговая оценка округляется в самом конце.


Материалы курса

Презентации лекций
Семинарские листки

Канал курса
Чат курса
Записи лекций


Материалы для БПМИ225:

Модуль 1

  • ДЗ №1 (выдача: 08.09.2023, дедлайн: 14.09.2023)
  • ДЗ №2 (выдача: 15.09.2023, дедлайн: 21.09.2023)
  • ДЗ №3 (выдача: 22.09.2023, дедлайн: 28.09.2023)
  • ДЗ №4 (выдача: 29.09.2023, дедлайн: 06.10.2023)
  • ДЗ №5 (выдача: 06.10.2023, дедлайн: 13.10.2023)
  • ДЗ №6 (выдача: 10.10.2023, дедлайн: 20.10.2023)
  • ДЗ №7=0

Модуль 2

  • ДЗ № 8 (выдача: 03.11.2023, дедлайн: 10.11.2023)
  • ДЗ № 9 (выдача: 10.11.2023, дедлайн: 17.11.2023)
  • ДЗ № 10 (выдача: 17.11.2023, дедлайн: 24.11.2023)
  • ДЗ № 11 (выдача: 21.11.2023, дедлайн: 01.12.2023)
  • ДЗ № 12 (выдача: 01.11.2023, дедлайн: 08.12.2023)
  • ДЗ № 13 (выдача: 08.11.2023, дедлайн: 15.12.2023)

Очные формы контроля

Коллоквиум I

Коллоквиум I будет проходить 18 октября с 10:00 до 16:00 и 20 октября с 14:40 до 21:00.

Правила проведения коллоквиума

Коллоквиум проходит в виде беседы преподавателя со студентом, в которой студент рассказывает ответы на вопросы билета, а преподаватель имеет возможность задавать любые уточняющие вопросы в рамках билета.

Билет будет состоять из следующих частей (максимально 8 баллов):

  1. Два вопроса на доказательства (каждый по 2 балла).
    В самом билете будут доказательства. За эту часть максимально можно получить 4 балла (2+2).
  2. Четыре вопроса из теоретического минимума – определения и формулировки теорем (каждое по 0,5).
    Эти вопросы не известны студенту до начала беседы с экзаменатором. За эту часть максимально можно получить 2 балла (0,5*4).
  3. Одна задача (2 балла).
    В самом билете будет дана задача из семинарских листков. За эту часть можно получить максимально 2 балла.

Если за ответ по билету было набрано 7,5-8 баллов, то студент имеет возможность запросить у проверяющего дополнительную сложную задачу (на 2 балла), которую проверяющий выбирает из списка дополнительных задач сам.
Замечание: Эта задача дается только в том случае, если студент набрал 7,5-8 баллов за все остальные части билета. Задача не прописана в билете, она выдается преподавателем.

Время подготовки билета На подготовку вопрос из билета (пунктов 1-3) 35 минут. Беседа с преподавателем идет не больше 35 минут. После беседы с преподавателем, если студент набирает 7,5-8 баллов, дается еще до 20 минут на решение сложной задачи. Студент максимально может потратить 1 час и 45 минут на сдачу коллоквиума.

Замечание: За списывание и использование любых носителей информации (электронных и бумажных), студент получает 0 за коллоквиум без возможности пересдачи.

Расписание коллоквиума

Время сдачи

Распределение

У студентов есть возможность поменяться временными слотами (временем) со своими однокурсниками. В этом случае нужно сообщить об этом ассистенту лектора.

Время начала коллоквиума для каждого студента индивидуально.

По всем вопросам по распределению обращайтесь к ассистенту лектора.

Пропуск своего временного слота без предупреждения по неуважительной причине будет оцениваться в 0 баллов.

Контрольная

Контрольная будет проходить 11 ноября с 18:10 до 19:40.

Студенту разрешается принести на контрольную лист А4, написанный от руки с одной стороны. Не разрешаются распечатки, даже если это распечатка рукописного файла с планшета.

За списывание и использование любых носителей информации (электронных и бумажных) студент получает 0 за контрольную без возможности пересдачи. Калькулятор не разрешен.

Распределение по аудиториям

Студенты пишут строго в тех аудиториях, которые указаны в Распределении.

Аудитория Преподаватель
и учебный(-е) ассистент(-ы)
R401 Зароднюк А.В.
Числова Алёна
Нигмазмянов Тимур
R201 Платонова К.С.
Андрян Тигран
Гриценко Дмитрий
R404 Радомский А.О.
Стамбеков Алмасбек
R204 Чанга М.Е.
Дробышевский Илья

Написание работы онлайн

Правила написания контрольной онлайн

Начало в 18:10.

  • Подключиться необходимо заранее по ссылке– не позднее 18:00.
  • При подключении необходимо включить камеру и показать удостоверение личности (например, свой студенческий билет).
  • Нужно включить демонстрацию экрана и обеспечить одновременную видимость себя и рабочего места, то есть использование двух камер (одна сбоку от студента, другая перед самим студентом)
  • После написания работу будет необходимо сдать в следующую форму(файл необходимо прикрепить в формате pdf). На фотографирование и загрузку будут выделены дополнительные 5 минут.

Официально в онлайн могут писать следующие студенты:

  1. Ковыляев Александр Максимович
  2. Курбатов Максим Андреевич
  3. Дзауров Кили Мусаевич
  4. Мукамбеков Актан Мелисович
  5. Комаров Никита Максимович
  6. Жамойдин Тимофей Сергеевич
  7. Тардова Александра Ильинична

Коллоквиум II

Коллоквиум II будет проходить 13 декабря с 8:10 до 21:00.

Правила проведения коллоквиума

Коллоквиум II проходит в виде беседы преподавателя со студентом, в которой студент рассказывает ответы на вопросы билета, а преподаватель имеет возможность задавать любые уточняющие или дополнительные вопросы по программе и материалам курса.

Билет будет состоять из следующих частей (максимально 8 баллов):

  1. Четыре вопроса из теоретического минимума (каждое по 0,5).
    Вопросы на определения и формулировки теорем. В самом билете будут написаны, какие именно определения. За эту часть максимально можно получить 2 балла (0,5*4).
  2. Два доказательства (каждое по 2 балла).
    Вопросы на доказательство. В самом билете будут доказательства. За эту часть максимально можно получить 4 балла (2*2).
  3. Одна задача (1 балл).
    В самом билете будет дана эта задача.
  4. Теоретические вопросы (1 балл)
    Вопросы не прописаны в билете, задаются преподавателем.

Если за ответ по билету было набрано от 7 до 8 баллов, то студент имеет возможность получить у проверяющего дополнительную сложную задачу на 2 балла.

Преподаватель может задавать любые уточняющие и дополнительные вопросы по каждой части билета.

На подготовку билета (пунктов 1-3) выделяется 50 минут.
Беседа с преподавателем идет не больше 20 минут.
На решение дополнительной задачи студенту дается еще 20 минут.
Сдача дополнительной задачи принимающему длится не более 10 минут.
Студент максимально может потратить 1 час и 40 минут на сдачу коллоквиума.

За списывание и использование любых носителей информации (электронных и бумажных) студент получает 0 за коллоквиум без возможности пересдачи.

Если студент не сдаст билет в конце коллоквиума, оценка автоматически ноль.

Расписание коллоквиума

Время сдачи

Распределение
Распределение в резервный день

Время начала коллоквиума для каждого студента индивидуально.

По всем вопросам по распределению обращайтесь к ассистенту лектора.

Экзамен

Форма для загрузки работы для БПМИ228 и для онлайн студентов

Экзамен будет проходить 23 декабря в 16:20.

Студенту разрешается принести на экзамен лист А4, написанный от руки с одной стороны. Не разрешаются распечатки, даже если это распечатка рукописного файла с планшета.

За списывание и использование любых носителей информации (электронных и бумажных) студент получает 0 за контрольную без возможности пересдачи. Калькулятор не разрешен.

Распределение по аудиториям

Студенты пишут строго в тех аудиториях, которые указаны в Распределении.

Написание работы онлайн

Правила написания контрольной онлайн

Начало в 16:20.

  • Подключиться необходимо заранее по следующей ссылке– не позднее 16:10.
  • При подключении необходимо включить камеру и показать удостоверение личности (например, свой студенческий билет).
  • Нужно включить демонстрацию экрана и обеспечить одновременную видимость себя и рабочего места, то есть использование двух камер (одна сбоку от студента, другая перед самим студентом)
  • После написания работу будет необходимо сдать в следующую форму(файл необходимо прикрепить в формате pdf). На фотографирование и загрузку будут выделены дополнительные 5 минут.

Официально в онлайн могут писать следующие студенты:

  1. Ковыляев Александр Максимович
  2. Курбатов Максим Андреевич
  3. Дзауров Кили Мусаевич
  4. Мукамбеков Актан Мелисович
  5. Скоморощенко Герман Витальевич
  6. Брель Мария

Программа курса

  1. Числовые ряды. Критерий Коши. Теорема о группировке членов ряда. Признаки сходимости знакопостоянных рядов.
  2. Признаки сравнения. Признаки Даламбера и Коши. Признак Гаусса.
  3. Интегральный признак Коши. Преобразование Абеля. Признаки Дирихле, Лейбница, Абеля. Теорема о перестановке членов знакопостоянного ряда. Признаки сходимости знакопеременных рядов.
  4. Переместительное свойство абсолютно сходящихся рядов. Теорема Римана о перестановках условно сходящихся рядов. Произведение рядов по Коши: теорема Мертенса, теорема Абеля. Абсолютная и условная сходимость. Бесконечные произведения.
  5. Равномерная сходимость функциональной последовательности. Критерий Коши, теорема о предельном переходе, теоремы о непрерывности/интегрируемости/дифференцируемости предельной функции.
  6. Равномерная сходимость функционального ряда: Критерий Коши, теоремы о предельном переходе, о непрерывности/интегрируемости дифференцируемости суммы ряда. Признаки Вейерштрасса, Дирихле, Абеля равномерной сходимости.
  7. Степенные ряды, теорема Коши-Адамара. Непрерывность, дифференцируемость и интегрируемость степенного ряда. Разложение функций в степенной ряд, табличные разложения.
  8. Кратный интеграл Римана, необходимое условие интегрируемости, свойства интеграла. Множество лебеговой меры нуль.
  9. Свойства множеств лебеговой меры нуль. Топология R^n, критерий компактности в R^n.
  10. Теорема Вейерштрасса о непрерывной функции на компакте. Колебания функции на множестве и в точке. Теорема Кантора-Гейне о колебаниях функции на компакте. Критерий Лебега интегрируемости функции по Риману.
  11. Верхние и нижние суммы Дарбу, их свойства. Верхний и нижний интегралы Дарбу, теорема об интегралах как пределах сумм Дарбу. Критерий Дарбу. Допустимые множества, интеграл по допустимому множеству.
  12. Критерий Лебега для допустимых множеств. Мера Жордана. Свойства интеграла Римана по допустимым множествам. Теоремы Фубини для бруска для допустимого множества. Формула замены переменных в кратном интеграле Римана.
  13. Евклидовые и нормированные пространства. Основная тригонометрическая система. Ряды Фурье, экстремальное свойство коэффициентов Фурье. Полные системы. Критерий полноты ОНС, равенство Парсеваля.
  14. Полнота основной тригонометрической системы. Ядро Дирихле, ядро Фейера, частичная сумма ряда Фурье по Чезаро. Теорема Фейера о равномерной сходимости частичных сумм по Чезаро. Теоремы Вейерштрасса о приближении непрерывной функции тригонометрическими и алгебраическими многочленами.
  15. Лемма Римана. Условие Дини. Теорема о сходимости ряда Фурье в точке. Ряды Фурье в комплексной форме. Преобразование Фурье и его свойства.


Литература

  1. Сборник задач и упражнений по математическому анализу : учеб. пособие для вузов, Демидович, Б. П.2003
  2. Сборник задач по математическому анализу. Т. 2.