Statistics of Stochastic Processes

Материал из Wiki - Факультет компьютерных наук
Перейти к: навигация, поиск

Преподаватели: Алексей Артемов, Евгений Егоров
Контакты: чат курса в телеграмме https://t.me/joinchat/A6_aGBKpCDjEFi7HQDednw

Почти наверное план курса
Тема Преподаватель Занятия Материалы Ключи Домашняя работа
Введение в случайные процессы Евгений 1, 2 Задачи 1 Марковский момент, процесс Пуассона, GP
Методы обнаружения разладки Алексей 3, 4
Линейные модели: ARIMA, GARCH Евгений 5, 6
Нелинейные модели: RNN, LSTM Алексей 7, 8
Байесовская фильтрация Евгений 9, 10
Large-Scale MCMC Евгений 11
Домашние работы

Оценки и обсуждение работ в анитаске, http://anytask.org/course/275 Позже здесь будут инвайты. О способе сдаче каждой домашней работы будет сообщено при её выдаче.


Система оценок

Блокирующие условия (суммируются):

  • оценка "отлично" может быть получена при условии посещения студентом не менее 60% лекций
  • оценка "отлично" может быть получена автоматом при условии "отличной" накопленной оценки и не менее 6 дополнительных баллов

Результирующая оценка по дисциплине рассчитывается по формуле:
O_итог=0.8 * O_ накопл + 0.2 * O_экз
Накопленная и итоговая оценки, участвующие в этой формуле, округляются арифметически.
Накопленная оценка рассчитывается по формуле:
O_накопл=0.75 * O_дз + 0.25 * O_самост

Оценка за домашние задания рассчитывается как среднее значение оценок за все выданные домашние задания. Оценка за самостоятельную работу рассчитывается как среднее значение оценок за все проверочные работы, проведённые на семинарских занятиях. В конце семестра разрешается переписать все самостоятельные работы, пропущенные по уважительной причине.

Дополнительные баллы выставляются за выполнение дополнительных частей домашних заданий, имеющих повышенную сложность и не участвующих при выставлении накопленной оценки.