RecSys 2022 2023 — различия между версиями

Материал из Wiki - Факультет компьютерных наук
Перейти к: навигация, поиск
(Оценки)
(Материалы курса)
Строка 30: Строка 30:
 
  ! Неделя !! Тема !! Материалы !! Quiz !! Домашние задание !! Дедлайн  
 
  ! Неделя !! Тема !! Материалы !! Quiz !! Домашние задание !! Дедлайн  
 
|-
 
|-
| style="background:#eaecf0;" | '''1''' || Введение в рекомендательные системы  || [https://github.com/anamarina/RecSys_course/tree/2022/week1 Семинары 1, 2] |||| ||  
+
| style="background:#eaecf0;" | '''1''' || Введение в рекомендательные системы  || [https://github.com/anamarina/RecSys_course/tree/2022/week1 Семинары 1, 2] || [https://forms.gle/JzNPyHpFVbtMe2jp8 Quiz 1]|| - || 20.09.22 23:59
 
|-
 
|-
 
| style="background:#eaecf0;" | '''2''' || || || ||  ||  
 
| style="background:#eaecf0;" | '''2''' || || || ||  ||  

Версия 14:30, 19 сентября 2022

О курсе

Целями освоения дисциплины «Рекомендательные системы» являются овладение студентами основными методами рекомендательных систем и подходами к поиску закономерностей в данных, например, таких как базы транзакций и последовательностей. В ходе курса будут рассмотрены:
- Основные типы рекомендательных систем и алгоритмические подходы к решению задачи рекомендаций;
- Методы проверки качества рекомендаций и достоверности выявленных закономерностей.

Репозиторий курса: Github

Чат курса: Telegram

Контакты

Преподаватель Контакты
Ананьева Марина Евгеньевна Email Telegram

Программное обеспечение

  • Python >= 3.8
  • Jupyter Notebook
  • pip3

Материалы курса

Неделя Тема Материалы Quiz Домашние задание Дедлайн
1 Введение в рекомендательные системы Семинары 1, 2 Quiz 1 - 20.09.22 23:59
2
3
4
5
6
7
8

Оценки

Таблица с оценками

Оценка ставится по формуле:

Final grade = min(10, 0.3 * Home Assignments + 0.15 * Article Summary + 0.15 * Weekly Quizzes + 0.4 * Exam), где

Home Assignments - 3 домашних работы в Jupyter Notebook (max 10 баллов за каждую).

Article Summary - конспект/презентация статьи из предложенного списка с критическим анализом (без выступления на семинаре) (max 10 баллов).

Weekly Quizzes - 7 квизов по мотивам материалов семинаров, которые сдаются перед началом следующего занятия в Google Forms (ариф.среднее за все квизы, max 10 баллов за каждый).

Exam - письменный экзамен в формате решения case-study построения рекомендательной системы для бизнеса (max 10 баллов).

Список литературы

1. Charu C. Aggarwal. Recommender Systems: The Textbook, Springer, April 2016 – Режим доступа: https://www.springer.com/gp/book/9783319296579

2. Recommender Systems Handbook. Francesco Ricci, Lior Rokach, Bracha Shapira (Eds.), Springer, 2015 – Режим доступа: https://www.springer.com/la/book/9781489976369