Discrete Mathematics DSBA2019/2020

Материал из Wiki - Факультет компьютерных наук
Перейти к: навигация, поиск



Homework Deadlines

For Group 191:

  • HW 1 -- September 23, 2019
  • HW 2 -- September 30, 2019

For Groups 192 and 193:

  • HW 1 -- September 24, 2019
  • HW 2 -- October 1, 2019

Online Consultation

If you have any questions regarding the Course, please feel free to ask them via our Telegram chat DSBA19-20 DM1 Public. Alternatively, you may use the Lecturer's VK page or send us an email (e:d,a:s.h:k;o,v AT gmail.com -- without punctuation marks to the left of AT, of course).


You can find some useful materials (including the Lecture Notes) here.

Problems Keywords
cw1 kw1
cw2 []

Office hours

Teacher / Assistant Monday Tuesday Wednesday Thursday Friday
Evgeny V. Dashkov from 3:10 till 5 p.m. in room S913
Boris R. Danilov from 10:00 till 11:30 a.m. in room S913, and from 9:00 till 10:00 a.m. by appointment
Artem Streltsov from 4:30 till 6:30 p.m. in room D204 from 3:10 till 4:30 p.m. (ONLY BY APPOINTMENT)

Recommended Reading

Please notice that The Book for our Course does not exist. The latter is based on many sources.

  1. Anderson J. A., Discrete Mathematics With Combinatorics. Prentice Hall, 2003.
  2. Biggs N. L., Discrete mathematics. 2nd ed., New York; Oxford: Oxford University Press, 2004.
  3. Gavrilov G. P., Sapozhenko A. A. Problems and Exercises in Discrete Mathematics. Kluwer Texts in the Mathematical Sciences 14. Springer, 1996.
  4. Lehman E., Thomson Leighton F., Meyer A. R. Mathematics for Computer Science, 2017.
  5. Lovasz L., Vesztergombi K. Discrete Mathematics. Lecture Notes; Yale University, 1999.
  6. Melnikov O., Sarvanov V., Tyshkevich R., Yemelichev V., Zverovich I. Exercises in Graph Theory. Kluwer Texts in the Mathematical Sciences 19. Springer, 1998.
  7. Rosen K. H. Discrete Mathematics and Its Applications. McGraw-Hill, 1999.
  8. Stein C., Drysdale R. L., Bogart K. Discrete mathematics for computer scientists. Addison-Wesley, 2010.
  9. Vinogradov I. M. Elements of number theory. Dover, 1954.

In Russian

If you understand Russian (by any chance), you will probably benefit from reading the following books.

  1. Виноградов И. М. Основы теории чисел. 9-е изд., М.: Наука, 1981.
  2. Вялый М., Подольский В., Рубцов А., Шварц Д., Шень А. Лекции по дискретной математике.
  3. Гаврилов Г. П., Сапоженко А. А. Задачи и упражнения по дискретной математике. 3-е изд., М.: ФИЗМАТЛИТ, 2004.
  4. Дашков Е. В. Введение в математическую логику. Множества и отношения. М.: МФТИ, 2019.
  5. Зубков А. М., Севастьянов Б. А., Чистяков В. П. Сборник задач по теории вероятностей. 2-е изд., М.: Наука, 1989.
  6. Мельников О. И. Теория графов в занимательных задачах. 5-е изд., М.: Книжный дом "ЛИБРОКОМ", 2013.
  7. Шень А., Математическая индукция. 5-е изд, М.: МЦНМО, 2016.

Grading System

Intermediate grade-2 = (1/2) colloquium-2 + (1/2) homework-2.

Cumulative grade-3 = (3/10) colloquium-2 + (3/10) colloquium-3 + (4/10) homework-3.

Final grade-3 = (7/10) cumulative grade-3 + (3/10) final exam.

The number in a grade’s name is the number of the module when grading takes place. The grade homework-n is the normalized average grade for the homework in modules from 1 to n. The Intermediate and Final grades are subject to rounding half up to an integer. All the other grades are reported with the greatest precision available.