Введение в анализ данных (майнор ИАД) — различия между версиями

Материал из Wiki - Факультет компьютерных наук
Перейти к: навигация, поиск
(О курсе)
(не показано 12 промежуточных версии этого же участника)
Строка 1: Строка 1:
 
== О курсе ==
 
== О курсе ==
  
 +
Курс читается для студентов 2-го курса [https://electives.hse.ru/minor_intel/ майнора ИАД] в 3-4 модулях.
  
Курс читается для студентов 2-го курса в 3-4 модулях.
+
Проводится с 2015 года.
 
+
Проводится с 2016 года.
+
  
 
'''Лектор:''' [http://www.hse.ru/staff/esokolov Соколов Евгений Андреевич]
 
'''Лектор:''' [http://www.hse.ru/staff/esokolov Соколов Евгений Андреевич]
  
Лекции проходят по   (Покровский бульвар, 11).
+
Лекции проходят по средам в 10:30, ауд. R405 (Покровский бульвар, 11).
  
 
=== Полезные ссылки ===
 
=== Полезные ссылки ===
  
[ Карточка курса и программа]
+
[https://www.hse.ru/edu/courses/316531794 Карточка курса и программа]
 +
 
 +
[https://github.com/esokolov/ml-minor-hse Репозиторий с материалами на GitHub]
 +
 
 +
Почта для сдачи домашних заданий (на самом деле задания сдаются в AnyTask, но если он не работает, то присылайте на почту): hse.minor.dm+<номер группы>@gmail.com (например, hse.minor.dm+3@gmail.com)
  
Почта для сдачи домашних заданий:
+
Канал в telegram для объявлений: https://t.me/hse_minor_intro_dm_2020
Канал в telegram для объявлений:  
+
  
Чат в telegram для обсуждений:
+
Чат в telegram для флуда: https://t.me/iad_flood
  
 
Ссылка на курс в Anytask:  
 
Ссылка на курс в Anytask:  
  
 
Таблица с оценками:
 
Таблица с оценками:
 
 
'''Вопросы''' по курсу можно задавать на почту курса, а также в телеграм лектору (esokolov@) или семинаристу.
 
Вопросы по материалам лекций/семинаров и по заданиям лучше всего оформлять в виде [https://github.com/esokolov/ml-course-hse/issues Issue] в [https://github.com/esokolov/ml-course-hse github-репозитории курса].
 
  
 
=== Семинары ===
 
=== Семинары ===
Строка 31: Строка 29:
 
{| class="wikitable"
 
{| class="wikitable"
 
|-
 
|-
! Группа !! Преподаватель !! Учебный ассистент  
+
! Группа !! Преподаватель !! Учебный ассистент !! Материалы семинаров
 
|-
 
|-
| 171 (МОП) || [https://www.hse.ru/org/persons/165212870 Зиннурова Эльвира Альбертовна] || [https://t.me/granilace Виктор Куканов]
+
| ИАД-1 ||  || ||  
 
|-
 
|-
| 172 (МОП) || [https://www.hse.ru/org/persons/209813459 Каюмов Эмиль Марселевич] || [https://t.me/svdcvt Соня Дымченко]
+
| ИАД-2 ||  || ||  
 
|-
 
|-
| 173 (ТИ) || [https://www.hse.ru/org/persons/? Хрушков Павел Вадимович] || [https://t.me/resokolov Роман Соколов]
+
| ИАД-3 ||  || ||
 
|-
 
|-
| 174 (АДИС) || [https://www.hse.ru/org/persons/? Кохтев Вадим Михайлович] || [https://t.me/widepeepoBlanket Евгений Алаев]
+
| ИАД-4 ||  || ||  
 
|-
 
|-
| 175 (РС) || [https://www.hse.ru/org/persons/228364473 Волохова Александра Константиновна] || [https://t.me/President153 Ярослав Пудяков]
+
| ИАД-5 ||  || ||  
 
|-
 
|-
| 176 (РС) || [https://www.hse.ru/org/persons/192085968 Яшков Даниил Дмитриевич] || [https://t.me/arcstranger Николай Пальчиков]
+
| ИАД-6 ||  || ||  
|-
+
| Магистратура ФТиАД || [https://www.hse.ru/org/persons/? Рысьмятова Анастасия Александровна] || [https://t.me/oleg_top Олег Дешеулин]
+
 
|-
 
|-
 
|}
 
|}
 
=== Консультации ===
 
  
 
=== Правила выставления оценок ===
 
=== Правила выставления оценок ===
  
 
В курсе предусмотрено несколько форм контроля знания:
 
В курсе предусмотрено несколько форм контроля знания:
* Самостоятельные работы на семинарах, проверяющие знание основных фактов с лекций
+
* Самостоятельные работы на семинарах, проверяющие знание основных фактов с лекций и семинаров
 
* Практические домашние работы на Python
 
* Практические домашние работы на Python
* Письменная контрольная работа
+
* Контрольная где-то в середине курса
 
* Письменный экзамен
 
* Письменный экзамен
  
 
Итоговая оценка вычисляется на основе оценки за работу в семестре и оценки за экзамен:
 
Итоговая оценка вычисляется на основе оценки за работу в семестре и оценки за экзамен:
  
Итог = Округление(0.15 * ПР + 0.4 * ДЗ + 0.15 * КР + 0.3 * Э)
+
O<sub>итоговая</sub> = Округление(0.4 * ДЗ + 0.1 * ПР + 0.2 * КР + 0.3 * Э)
  
ПР — средняя оценка за самостоятельные работы на семинарах
+
ДЗ — средняя оценка за практические домашние задания
  
ДЗ — средняя оценка за практические домашние работы на Python
+
ПР — средняя оценка за письменные проверочные работы на семинарах
  
 
КР — оценка за контрольную работу
 
КР — оценка за контрольную работу
Строка 75: Строка 69:
 
=== Правила сдачи заданий ===
 
=== Правила сдачи заданий ===
  
За каждый день просрочки после мягкого дедлайна снимается 1 балл. После жёсткого дедлайна работы не принимаются. Даже при опоздании на одну секунду. Сдавайте заранее. Есть исключения, о них написано ниже.
+
За каждый день просрочки после мягкого дедлайна снимается 1 балл. После жёсткого дедлайна работы не принимаются. Даже при опоздании на одну секунду. Сдавайте заранее.
  
 
При обнаружении плагиата оценки за домашнее задание обнуляются всем задействованным в списывании студентам, а также подаётся докладная записка в деканат. Следует помнить, что при повторном списывании деканат имеет право отчислить студента.
 
При обнаружении плагиата оценки за домашнее задание обнуляются всем задействованным в списывании студентам, а также подаётся докладная записка в деканат. Следует помнить, что при повторном списывании деканат имеет право отчислить студента.
Строка 83: Строка 77:
 
== Лекции ==
 
== Лекции ==
  
Ко всем конспектам на GitHub есть исходники. Исправления и дополнения всячески приветствуются!
+
== Семинары ==
  
'''Лекция 1''' (6 сентября). Введение в машинное обучение. Основные термины, постановки задач и примеры применения. [[https://github.com/esokolov/ml-course-hse/blob/master/2019-fall/lecture-notes/lecture01-intro.pdf Конспект]]
+
== Практические задания ==
  
 +
За каждый день просрочки после мягкого дедлайна снимается 1 балл. После жёсткого дедлайна работы не принимаются, но есть исключение. В течение семестра каждый студент может не более 2 раз сдать задание после жёсткого дедлайна — в этом случае за каждый день просрочки продолжает вычитаться по одному баллу (если не оговорено иное).
  
== Семинары ==
+
== Контрольная работа ==
  
'''Семинар 1.''' Области применения машинного обучения. Инструменты data scientist'а. Pandas и разведочный анализ данных. [[https://github.com/esokolov/ml-course-hse/blob/master/2019-fall/seminars/sem01-intro.ipynb Ноутбук]]
+
Вопросы прошлого года: https://docs.google.com/document/d/1kdeA730ItEqgC-4V_-U2gq_EbpX413XmmE9wMj7Wdh8/edit?usp=sharing
  
 +
Примеры задач:
 +
* Метрические методы, kNN [[http://nbviewer.jupyter.org/github/shestakoff/minor_da_2017/blob/master/colloc_knn.ipynb Примеры задач]]
 +
* Линейные методы [[https://github.com/esokolov/ml-minor-hse/blob/master/colloquium-2017/colloquium_minor_problems_linear.pdf Примеры задач]]
 +
* Решающие деревья [[https://github.com/esokolov/ml-minor-hse/blob/master/colloquium-2017/colloquium_minor_problems_trees.ipynb Примеры задач]]
 +
* Метрики качества [[https://github.com/esokolov/ml-minor-hse/blob/master/colloquium-2017/colloquium_minor_problems_metrics.ipynb Примеры задач]]
  
== Практические задания ==
+
== Экзамен ==
  
За каждый день просрочки после мягкого дедлайна снимается 1 балл. После жёсткого дедлайна работы не принимаются, но есть исключение. В течение семестра каждый студент может не более 2 раз сдать задание после жёсткого дедлайна — в этом случае за каждый день просрочки продолжает вычитаться по одному баллу (если не оговорено иное).
+
Вопросы прошлого года: https://docs.google.com/document/d/1IrRO4kbzKieTWDgJ5UhfPECyU2tvq9CZi2mXgQPzf30/edit?usp=sharing
  
'''Задание 1.''' Работа с Pandas и Matplotlib.
+
[https://github.com/esokolov/ml-minor-hse/blob/master/exam-2017/exam_problems_example.pdf Примеры задач прошлого года] (также могут войти задачи из коллоквиума)
+
Мягкий дедлайн: 15.09.2019 23:59.  
+
  
Жесткий дедлайн: 17.09.2019 23:59.
+
==Полезные материалы==
 +
===Курсы по машинному обучению и анализу данных===
 +
* [http://www.machinelearning.ru/wiki/index.php?title=Машинное_обучение_%28курс_лекций%2C_К.В.Воронцов%29 Курс по машинному обучению К.В. Воронцова]
 +
* [https://yandexdataschool.ru/edu-process/courses/machine-learning Видеозаписи лекций курса Школы Анализа Данных, К.В. Воронцов]
 +
* [https://www.coursera.org/specializations/machine-learning-data-analysis Coursera: Машинное обучение и анализ данных (специализация)]
 +
* [https://www.coursera.org/learn/introduction-machine-learning Coursera: Введение в машинное обучение, К.В. Воронцов]
 +
* [https://www.coursera.org/learn/machine-learning Coursera: Machine Learning, Andrew Ng]
  
[[https://github.com/esokolov/ml-course-hse/blob/master/2019-fall/homeworks-practice/homework-practice-01.ipynb Ноутбук с заданием]]
+
===Статьи===
 +
* [http://www.toptal.com/machine-learning/machine-learning-theory-an-introductory-primer An Introduction to Machine Learning Theory and Its Applications: A Visual Tutorial with Examples]
 +
* [http://www.r2d3.us/visual-intro-to-machine-learning-part-1/ A Visual Introduction to Machine Learning]
  
==Теоретические домашние задания==
+
===Книги===
 +
* Mohammed J. Zaki, Wagner Meira Jr. Data Mining and Analysis. Fundamental Concepts and Algorithms. Cambridge University Press, 2014.
 +
* Boris Mirkin. Core Concepts in Data Analysis: Summarization, Correlation, Visualization. 2010.
 +
* James, Witten, Hastie, Tibshirani. An Introduction to Statistical Learning. 2013.
  
Теоретические ДЗ не проверяются, но задачи из них могут войти в проверочные работы на семинарах.
+
== Страницы прошлых лет ==
  
'''Теоретическое домашнее задание 1''': линейная регрессия и векторное дифференцирование [[https://github.com/esokolov/ml-course-hse/blob/master/2019-fall/homeworks-theory/homework-theory-01-linregr.pdf ссылка]]
+
[[Майнор_Интеллектуальный_анализ_данных/Введение_в_анализ_данных | 2018/19 учебный год ]]
  
== Контрольная работа ==
+
[[Майнор_Интеллектуальный_анализ_данных/Введение_в_анализ_данных/2017-2018 | 2017/18 учебный год ]]
  
== Экзамен ==
+
[[Майнор_Интеллектуальный_анализ_данных/Введение_в_анализ_данных/2016-2017 | 2016/17 учебный год ]]
  
== Полезные материалы ==
+
[[Майнор_Интеллектуальный_анализ_данных/Введение_в_анализ_данных/2015-2016 | 2015/16 учебный год ]]
===Книги===
+
 
 +
[[Category:Майнор "Интеллектуальный анализ данных"]]

Версия 22:42, 14 января 2020

О курсе

Курс читается для студентов 2-го курса майнора ИАД в 3-4 модулях.

Проводится с 2015 года.

Лектор: Соколов Евгений Андреевич

Лекции проходят по средам в 10:30, ауд. R405 (Покровский бульвар, 11).

Полезные ссылки

Карточка курса и программа

Репозиторий с материалами на GitHub

Почта для сдачи домашних заданий (на самом деле задания сдаются в AnyTask, но если он не работает, то присылайте на почту): hse.minor.dm+<номер группы>@gmail.com (например, hse.minor.dm+3@gmail.com)

Канал в telegram для объявлений: https://t.me/hse_minor_intro_dm_2020

Чат в telegram для флуда: https://t.me/iad_flood

Ссылка на курс в Anytask:

Таблица с оценками:

Семинары

Группа Преподаватель Учебный ассистент Материалы семинаров
ИАД-1
ИАД-2
ИАД-3
ИАД-4
ИАД-5
ИАД-6

Правила выставления оценок

В курсе предусмотрено несколько форм контроля знания:

  • Самостоятельные работы на семинарах, проверяющие знание основных фактов с лекций и семинаров
  • Практические домашние работы на Python
  • Контрольная где-то в середине курса
  • Письменный экзамен

Итоговая оценка вычисляется на основе оценки за работу в семестре и оценки за экзамен:

Oитоговая = Округление(0.4 * ДЗ + 0.1 * ПР + 0.2 * КР + 0.3 * Э)

ДЗ — средняя оценка за практические домашние задания

ПР — средняя оценка за письменные проверочные работы на семинарах

КР — оценка за контрольную работу

Э — оценка за экзамен

Округление арифметическое.

Правила сдачи заданий

За каждый день просрочки после мягкого дедлайна снимается 1 балл. После жёсткого дедлайна работы не принимаются. Даже при опоздании на одну секунду. Сдавайте заранее.

При обнаружении плагиата оценки за домашнее задание обнуляются всем задействованным в списывании студентам, а также подаётся докладная записка в деканат. Следует помнить, что при повторном списывании деканат имеет право отчислить студента.

При наличии уважительной причины пропущенную проверочную можно написать позднее, а дедлайн по домашнему заданию может быть перенесён. Дедлайн по домашнему заданию переносится на количество дней, равное продолжительности уважительной причины. Решение о том, является ли причина уважительной, принимает исключительно учебный офис.

Лекции

Семинары

Практические задания

За каждый день просрочки после мягкого дедлайна снимается 1 балл. После жёсткого дедлайна работы не принимаются, но есть исключение. В течение семестра каждый студент может не более 2 раз сдать задание после жёсткого дедлайна — в этом случае за каждый день просрочки продолжает вычитаться по одному баллу (если не оговорено иное).

Контрольная работа

Вопросы прошлого года: https://docs.google.com/document/d/1kdeA730ItEqgC-4V_-U2gq_EbpX413XmmE9wMj7Wdh8/edit?usp=sharing

Примеры задач:

Экзамен

Вопросы прошлого года: https://docs.google.com/document/d/1IrRO4kbzKieTWDgJ5UhfPECyU2tvq9CZi2mXgQPzf30/edit?usp=sharing

Примеры задач прошлого года (также могут войти задачи из коллоквиума)

Полезные материалы

Курсы по машинному обучению и анализу данных

Статьи

Книги

  • Mohammed J. Zaki, Wagner Meira Jr. Data Mining and Analysis. Fundamental Concepts and Algorithms. Cambridge University Press, 2014.
  • Boris Mirkin. Core Concepts in Data Analysis: Summarization, Correlation, Visualization. 2010.
  • James, Witten, Hastie, Tibshirani. An Introduction to Statistical Learning. 2013.

Страницы прошлых лет

2018/19 учебный год

2017/18 учебный год

2016/17 учебный год

2015/16 учебный год