Введение в анализ данных (майнор ИАД) — различия между версиями

Материал из Wiki - Факультет компьютерных наук
Перейти к: навигация, поиск
(Правила выставления оценок)
(Правила сдачи заданий)
Строка 63: Строка 63:
 
=== Правила сдачи заданий ===
 
=== Правила сдачи заданий ===
  
За каждый день просрочки после мягкого дедлайна снимается 1 балл. После жёсткого дедлайна работы не принимаются. Даже при опоздании на одну секунду. Сдавайте заранее. Есть исключения, о них написано ниже.
+
За каждый день просрочки после мягкого дедлайна снимается 1 балл. После жёсткого дедлайна работы не принимаются. Даже при опоздании на одну секунду. Сдавайте заранее.
  
 
При обнаружении плагиата оценки за домашнее задание обнуляются всем задействованным в списывании студентам, а также подаётся докладная записка в деканат. Следует помнить, что при повторном списывании деканат имеет право отчислить студента.
 
При обнаружении плагиата оценки за домашнее задание обнуляются всем задействованным в списывании студентам, а также подаётся докладная записка в деканат. Следует помнить, что при повторном списывании деканат имеет право отчислить студента.

Версия 22:25, 14 января 2020

О курсе

Курс читается для студентов 2-го курса майнора ИАД в 3-4 модулях.

Проводится с 2015 года.

Лектор: Соколов Евгений Андреевич

Лекции проходят по средам в 10:30, ауд. R405 (Покровский бульвар, 11).

Полезные ссылки

Карточка курса и программа

Почта для сдачи домашних заданий (на самом деле задания сдаются в AnyTask, но если он не работает, то присылайте на почту): hse.minor.dm+<номер группы>@gmail.com (например, hse.minor.dm+3@gmail.com)

Канал в telegram для объявлений:

Чат в telegram для обсуждений:

Ссылка на курс в Anytask:

Таблица с оценками:

Семинары

Группа Преподаватель Учебный ассистент Материалы семинаров
ИАД-1
ИАД-2
ИАД-3
ИАД-4
ИАД-5
ИАД-6

Правила выставления оценок

В курсе предусмотрено несколько форм контроля знания:

  • Самостоятельные работы на семинарах, проверяющие знание основных фактов с лекций и семинаров
  • Практические домашние работы на Python
  • Контрольная где-то в середине курса
  • Письменный экзамен

Итоговая оценка вычисляется на основе оценки за работу в семестре и оценки за экзамен:

Oитоговая = 0.7 * Oнакопленная + 0.3 * Оэкз

Оценка за работу в семестре вычисляется по формуле

Oнакопленная = 0.2 * Oсамостоятельные + 0.6 * Одз + 0.2 * Оконтрольная

Оценка за самостоятельную работу вычисляется как среднее по всем самостоятельным, оценка за домашнюю работу — как среднее по всем практическим заданиям.

Правила сдачи заданий

За каждый день просрочки после мягкого дедлайна снимается 1 балл. После жёсткого дедлайна работы не принимаются. Даже при опоздании на одну секунду. Сдавайте заранее.

При обнаружении плагиата оценки за домашнее задание обнуляются всем задействованным в списывании студентам, а также подаётся докладная записка в деканат. Следует помнить, что при повторном списывании деканат имеет право отчислить студента.

При наличии уважительной причины пропущенную проверочную можно написать позднее, а дедлайн по домашнему заданию может быть перенесён. Дедлайн по домашнему заданию переносится на количество дней, равное продолжительности уважительной причины. Решение о том, является ли причина уважительной, принимает исключительно учебный офис.

Лекции

Ко всем конспектам на GitHub есть исходники. Исправления и дополнения всячески приветствуются!

Лекция 1 (6 сентября). Введение в машинное обучение. Основные термины, постановки задач и примеры применения. [Конспект]


Семинары

Семинар 1. Области применения машинного обучения. Инструменты data scientist'а. Pandas и разведочный анализ данных. [Ноутбук]


Практические задания

За каждый день просрочки после мягкого дедлайна снимается 1 балл. После жёсткого дедлайна работы не принимаются, но есть исключение. В течение семестра каждый студент может не более 2 раз сдать задание после жёсткого дедлайна — в этом случае за каждый день просрочки продолжает вычитаться по одному баллу (если не оговорено иное).

Задание 1. Работа с Pandas и Matplotlib.

Мягкий дедлайн: 15.09.2019 23:59.

Жесткий дедлайн: 17.09.2019 23:59.

[Ноутбук с заданием]

Теоретические домашние задания

Теоретические ДЗ не проверяются, но задачи из них могут войти в проверочные работы на семинарах.

Теоретическое домашнее задание 1: линейная регрессия и векторное дифференцирование [ссылка]

Контрольная работа

Вопросы прошлого года: https://docs.google.com/document/d/1kdeA730ItEqgC-4V_-U2gq_EbpX413XmmE9wMj7Wdh8/edit?usp=sharing

Примеры задач:

Экзамен

Вопросы прошлого года: https://docs.google.com/document/d/1IrRO4kbzKieTWDgJ5UhfPECyU2tvq9CZi2mXgQPzf30/edit?usp=sharing

Примеры задач прошлого года (также могут войти задачи из коллоквиума)

Полезные материалы

Курсы по машинному обучению и анализу данных

Статьи

Книги

  • Mohammed J. Zaki, Wagner Meira Jr. Data Mining and Analysis. Fundamental Concepts and Algorithms. Cambridge University Press, 2014.
  • Boris Mirkin. Core Concepts in Data Analysis: Summarization, Correlation, Visualization. 2010.
  • James, Witten, Hastie, Tibshirani. An Introduction to Statistical Learning. 2013.

Страницы прошлых лет

2017/18 учебный год

2016/17 учебный год

2015/16 учебный год