Алгоритмы и структуры данных. Подгруппа 105-1 — различия между версиями

Материал из Wiki - Факультет компьютерных наук
Перейти к: навигация, поиск
(Задачи)
Строка 27: Строка 27:
 
==(15.01) Сложность алгоритмов и стратегия "разделяй и властвуй"==
 
==(15.01) Сложность алгоритмов и стратегия "разделяй и властвуй"==
 
===План занятия===
 
===План занятия===
 +
# Сортировка слиянием. Алгоритм, рекуррентное соотношение для времени сортировки, сложность. (подробнее: <<Алгоритмы>>, параграф 2.3, стр. 54, см. список рекомендованной литературы)
 +
# Понятие сложности алгоритма.
 +
# Задача о слиянии m упорядоченных массивов по n элементов. Три алгоритма решения. Анализ сложности каждого из них.
 +
 +
===Домашнее задание (15.01-29.01)===
 +
#

Версия 15:18, 15 января 2015

Оценивание

В каждом домашнем задании для получения максимального балла требуется решить или все задачи без звёздочек, или все задачи со звёздочками. Решения после установленного дедлайна не принимаются.

(12.01) Мотивация к изучению алгоритмов. Подсчёт числа операций

План занятия

  1. Числа Фибоначчи. Определение. Примитивный рекурсивный алгоритм вычисления i-ого числа. Оценка числа операций. Анализ причин неэффективности. Алгоритм с запоминанием вычисленных ранее значений. Оценка числа операций. Сравнение с предыдущим. (подробнее: глава 0, страницы 8-10 из книги <<Алгоритмы>>, см. список рекомендованной литературы)
  2. Задача о ханойской башне. Постановка задачи. Рекурсивный алгоритм. Рекуррентная формула для числа перемещений. Замкнутая формула для числа перемещений (+ доказательство). Доказательство того, что эту задачу нельзя решить используя меньшее число перемещений дисков. (Разбор задачи о ханойской башне, автор Сергей Объедков)
  3. Сортировка пузырьком. Алгоритм. Подсчёт количество операций сравнения и обмена (swap). Анализ наилучшего и наихудшего случаев (Википедия)

Домашнее задание (12.01 - 26.01)

Во всех задачах, если не оговорено иного, предполагаем, что работаем с целыми неотрицательными числами. Для первых 7 задач необходимо

  • написать алгоритм на любом языке программирования или на псевдокоде,
  • описать что можно считать наилучшим и наихудшим случаями,
  • для каждого из двух случаев подсчитать отдельно количество операций сравнения и swap (если есть).

Задачи

  1. Даны три числа, требуется вернуть наименьшее.
  2. Даны три числа, требуется отсортировать их.
  3. Дана последовательность A из n элементов и число x, требуется найти элемент равный x. Примечание: если таких значений i несколько, вернуть любое; если такого элемента нет, функция должна сообщить об этом.
  4. * Дана упорядоченная последовательность A из n элементов и число x, требуется найти такое i, что A[i] равно x. Алгоритм должен быть эффективней, чем в предыдущем пункте и использовать то, что последовательность упорядочена.
  5. Дана последовательность из 100 000 чисел от 0 до 100. Напишите эффективный алгоритм сортировки, который бы учитывал специфику входных данных.
  6. * Дано 32 битное неотрицательное число. Требуется найти максимальный ненулевой бит. Разрешается использовать операцию обращения к i-тому биту. В дополнение к заданиям в преамбуле укажите математическое ожидание количества операций, считая, что числа распределены равномерно.
  7. * Даны 32 битные неотрицательные числа m и n. Требуется вывести True, если m < n, иначе False. Разрешается использовать операцию обращения к i-тому биту. В дополнение к заданиям в преамбуле укажите математическое ожидание количества операций, считая, что числа распределены равномерно.
  8. Напишите рекурсивную функцию, вычисляющую n-ое число Фибоначчи (как на занятии). Подсчитайте количество рекурсивных вызовов.
  9. * Напишите функцию, вычисляющую n-ое число Фибоначчи, у которой число операций — полином от n, и которая использует количество памяти, независящее от n.

(15.01) Сложность алгоритмов и стратегия "разделяй и властвуй"

План занятия

  1. Сортировка слиянием. Алгоритм, рекуррентное соотношение для времени сортировки, сложность. (подробнее: <<Алгоритмы>>, параграф 2.3, стр. 54, см. список рекомендованной литературы)
  2. Понятие сложности алгоритма.
  3. Задача о слиянии m упорядоченных массивов по n элементов. Три алгоритма решения. Анализ сложности каждого из них.

Домашнее задание (15.01-29.01)