Линейная алгебра и геометрия на ПМИ 2024/2025 (основной поток)
Данную дисциплину вместе с основным потоком ПМИ изучают также студенты ОП "Экономика и анализ данных"
Telegram-канал: https://t.me/LA_AMI_24_osn
Содержание
- 1 Преподаватели и учебные ассистенты
- 2 Расписание консультаций
- 3 Формы контроля знаний студентов
- 4 Порядок формирования итоговой оценки
- 5 Краткое содержание лекций
- 6 Листки с задачами
- 7 Индивидуальные домашние задания
- 8 Лабораторные работы
- 9 Контрольные работы
- 10 Коллоквиумы
- 11 Экзамены
- 12 Ведомости текущего контроля
- 13 Ссылки
- 14 Литература
Преподаватели и учебные ассистенты
Основной поток ПМИ
Группа | БПМИ246 | БПМИ247 | БПМИ248 | БПМИ249 | БПМИ2410 | БПМИ2411 | БПМИ2412 | БПМИ2413 | БПМИ2414 | |
---|---|---|---|---|---|---|---|---|---|---|
Лектор | Роман Авдеев | |||||||||
Семинарист | Роман Авдеев | Юлия Зайцева | Кирилл Шахматов | Илья Болдырев | Роман Стасенко | Михаил Игнатьев | Кирилл Шахматов | Александр Перепечко | Алина Никитина | |
Ассистент1 | Ульяна Паркина | Екатерина Горинова | Артём Кичигин | Тимур Алиев | Матвей Замятин | София Сабгир | Денис Галимов | Дарья Морель | Екатерина Владимирова | |
Ассистент2 | Арсений Лазо | Тимофей Булгаков | Максим Копнев | Екатерина Мирошник | Михаил Вовк | Карина Иванова | Артём Абросимов | Михаил Колос | Мария Прохорова | |
Ассистент курса | Аделя Гараева |
Поток ЭАД
Группа | БЭАД241 | БЭАД242 | БЭАД243 | БЭАД244 | БЭАД245 | БЭАД246 |
---|---|---|---|---|---|---|
Лектор | Роман Авдеев | |||||
Семинарист | Виталий Юделевич | Алёна Зароднюк | Роман Стасенко | Вероника Киктева | Виктор Лопаткин | Марк Черебедов |
Ассистент1 | Татьяна Лукина | Михаил Артёмов | Анна Попова | Полина Рыльцева | Вадим Пастушенко | Михаил Король |
Ассистент2 | Вероника Дмитренко | Дмитрий Мельник | Екатерина Трушкова | Анна Русанова | Мария Филиппович | Алексей Токарев |
Ассистент курса | Аделя Гараева |
Расписание консультаций
Александр Перепечко: вторник 14:20–15:40
Вероника Киктева: среда 14:40–16:00
Формы контроля знаний студентов
- Коллоквиум
- Контрольная работа
- Большие домашние задания (делящиеся на индивидуальные домашние задания и лабораторные работы)
- Активность и работа на семинарах
- Экзамен
Бонус:
- Устная сдача задач из листков
Порядок формирования итоговой оценки
2-й модуль
Итоговая оценка за 1-2 модули вычисляется по формуле
Oитоговая = min(10; 0,35*Oэкз + 0,22*Oколл + 0,15*Oк/р + 0,15*Oбдз + 0,15*Oсем + 0,08*Oл),
где Oэкз — оценка за экзамен, Oколл — оценка за коллоквиум, Oк/р — оценка за контрольную работу, Oбдз — оценка за большие домашние задания, Oсем — оценка за работу на семинарах и Oл — оценка за сдачу задач из листков.
Все вычисления по указанной формуле используют неокруглённые значения промежуточных оценок. Способ округления итоговой оценки — арифметический.
Краткое содержание лекций
Лекция 1 (2.09.2024) [слайды]. Матрицы. Равенство матриц. Операции сложения и умножения на скаляр для матриц, свойства этих операций. Пространство R^n, его отождествление с матрицами-столбцами высоты n. Транспонирование матриц, его простейшие свойства. Умножение матриц, примеры.
Лекция 2 (9.09.2024) [слайды]. Основные свойства умножения матриц. Некоммутативность умножения матриц. Диагонали квадратной матрицы. Диагональные матрицы. Умножение на диагональную матрицу слева и справа. Единичная матрица и её свойства. След квадратной матрицы и его свойства. Системы линейных уравнений. Матричная форма записи системы линейных уравнений. Совместные и несовместные системы. Расширенная матрица системы линейных уравнений. Эквивалентные системы.
Лекция 3 (16.09.2024) [слайды]. Элементарные преобразования системы линейных уравнений и соответствующие преобразования строк её расширенной матрицы. Сохранение множества решений системы линейных уравнений при элементарных преобразованиях. Ступенчатые матрицы. Улучшенный ступенчатый вид матрицы. Приведение матрицы к ступенчатому виду элементарными преобразованиями строк. Приведение ступенчатой матрицы к улучшенному ступенчатому виду элементарными преобразованиями строк. Метод Гаусса решения систем линейных уравнений. Главные и свободные неизвестные. Общее решение системы линейных уравнений.
Лекция 4 (23.09.2024) [слайды]. Однородные системы линейных уравнений. Существование ненулевого решения у однородной системы линейных уравнений, в которой число неизвестных больше, чем число уравнений. Связь между множеством решений системы линейных уравнений и множеством решений соответствующей однородной системы. Реализация элементарных преобразований строк матрицы при помощи умножения слева на подходящую матрицу. Матричные уравнения вида AX=B и XA=B, общий метод их решения. Определение обратной матрицы. Обратная матрица как решение уравнения AX=E (пока без доказательства). Перестановки на множестве {1,2,...,n}. Инверсии в перестановке. Знак и чётность перестановки.
Лекция 5 (30.09.2024) [слайды]. Произведение перестановок. Ассоциативность произведения перестановок. Теорема о знаке произведения перестановок. Тождественная перестановка. Обратная перестановка и её знак. Транспозиции, знак транспозиции. Определитель квадратной матрицы. Определители порядков 2 и 3. Определитель транспонированной матрицы.
Лекция 6 (7.10.2024) [слайды]. Определитель матрицы со строкой (столбцом) нулей. Поведение определителя при умножении строки (столбца) на число и при разложении строки (столбца) в сумму двух строк (столбцов). Определитель матрицы с двумя одинаковыми строками (столбцами). Поведение определителя при прибавлении к строке (столбцу) другой, умноженной на число. Изменение знака определителя при перестановке двух строк (столбцов). Верхнетреугольные и нижнетреугольные матрицы, их определители. Определитель с углом нулей.
Листки с задачами
Задачи из листков можно сдавать любому семинаристу по данному предмету (в том числе с пилотного потока) в часы его консультаций или по договорённости.
Правила сдачи и оценивания задач из листков:
- каждый пункт в листке считается отдельной задачей
- сдача задачи возможна только при наличии её решения в письменном виде
- результатом сдачи одной задачи может быть 0 или 1
Листок 1. Матричные алгебры Ли
Сроки сдачи листка 1:
задачи принимаются в период с момента выдачи листка по 19 октября включительно
в период с 13 по 19 октября включительно одному студенту разрешается сдать не более шести задач
Индивидуальные домашние задания
1-2 модули
Лабораторные работы
Для каждой лабораторной работы файл с условием представляет собой IPython ноутбук. Выполнять работу нужно прямо в нём. При этом, пожалуйста, не удаляйте условия задач. Задание должно быть выполнено на языке Python 3.
Контрольные работы
Коллоквиумы
Экзамены
Формат проведения: письменная работа
Разрешения на экзамене: иметь с собой только ручку и электронное устройство с единственной функцией "калькулятор".
Ведомости текущего контроля
1-2 модули
Результаты проверки больших домашних заданий
246 | 247 | 248 | 249 | 2410 | 2411 | 2412 | 2413 | 2414 | Э241 | Э242 | Э243 | Э244 | Э245 | Э246 |
---|
Результаты сдачи задач из листков
246 | 247 | 248 | 249 | 2410 | 2411 | 2412 | 2413 | 2414 | Э241 | Э242 | Э243 | Э244 | Э245 | Э246 |
---|
Ссылки
Telegram-канал семинаров в группе БПМИ246
Литература
Учебники
- А.И. Кострикин. Введение в алгебру. Часть I. Основы алгебры. М.: Физматлит, 1994
- А.И. Кострикин. Введение в алгебру. Часть II. Линейная алгебра. М.: Физматлит, 2000
- Э.Б. Винберг. Курс алгебры. М.: Факториал, 1999 (или любое последующее издание)
- А.А. Михалёв, А.В. Михалёв. Начала алгебры. Часть I. М.: Интернет-университет информационных технологий, 2005
Сборники задач
- И.В. Проскуряков. Сборник задач по линейной алгебре (любое издание, например М.: БИНОМ, 2005)
- Сборник задач по алгебре под редакцией А.Н. Кострикина. Новое издание. М.: МЦНМО, 2009
- Г.Д. Ким, Л.В. Крицков. Алгебра и аналитическая геометрия. Теоремы и задачи. Том I. М.: "Планета знаний", 2007