Символьные вычисления 23/24
Содержание
О курсе
Курс читается для студентов 4-го курса в 3 модуле.
Лектор — Зайцева Юлия Ивановна
Семинарист — Каледин Максим Львович
Ассистент — Преснова Екатерина Денисовна
Чат в телеграм: https://t.me/+qAC26bUGAj00ZTMy
Лекции
Лекции проходят по четвергам в 13:00 начиная с 7 марта.
Лекция 1 (20.01.2024) О курсе в целом. Кольца и идеалы. Конечно порожденные идеалы и нётеровы кольца. Факторкольца. Конечно порожденные модули и подмодули. Теорема Гильберта о базисе.
Лекция 2 (27.01.2024) Мономиальный порядок на множестве мономов. Лемма Гордана. Старший член многочлена от многих переменных. Лемма о старшем члене. Алгоритм деления. Оператор редукции. Нормальная форма многочлена. Базис Грёбнера идеала.
Лекция 3 (03.02.2024) Критерий Бухбергера и алгоритм Бухбергера. Минимальный базис Грёбнера.
Лекция 4 (10.02.2024) Алгоритм Бухбергера. Алгебраическое подмножество. Алгебра регулярных функций. Аффинное алгебраическое многообразие.
Лекция 5 (17.02.2024) Радикал идеала. Радикальный идеал. Теорема Гильберта о нулях. Максимальный идеал. Слабая версия теоремы Гильберта о нулях.
Лекция 6 (24.02.2024) Теорема Гильберта о нулях (доказательство). Cooтветствие между максимальными идеалами и точками многообразия (формулировка). Морфизмы и изоморфизмы многообразий. Топологическое пространство. Топология Зарисского. Непрерывность морфизмов. Плотные подмножества.
Лекция 7 (02.03.2024) Неприводимые подмножества топологического пространства. Нетеровы топологические пространства. Неприводимые компоненты алгебраического многообразия. Восемь задач на применение базисов Грёбнера в теории систем полиномиальной уравнений, аффинной алгебраической геометрии и коммутативной алгебре.
Лекция 8 (07.03.2024) Характеристика поля. Конечные поля. Простое подполе и порядок конечного поля. Автоморфизм Фробениуса. Теорема о степени башни расширений. Теорема существования и единственности для конечных полей, конструкция через поле разложения и факторкольцо (формулировка). Неприводимые многочлены над конечным полем. Функция Мёбиуса и ее свойства. Аддитивная формула Мёбиуса и формула для числа неприводимых многочленов данной степени над конечным полем. Существование не менее одного неприводимого многочлена данной степени.
Лекция 9 (14.03.2024) Задача о разложении многочлена на неприводимые множители. Избавление от кратных множителей. f-разлагающие многочлены. Сведение к системе линейных уравнений: алгоритм Берлекэмпа.
Лекция 10 (21.03.2024) Коды, исправляющие ошибки. Основная задача теории кодирования. Линейные коды. Вес Хэмминга и минимальное расстояние. Порождающая и проверочная матрицы. Алгоритм декодирования по лидеру смежного класса для произвольного линейного кода. Коды Рида-Соломона. Циклические коды и главные идеалы. Коды БЧХ и число исправляемых ими ошибок (формулировка).
Семинары
Семинары проходят по вторникам в 14:40.
Контрольные мероприятия
Домашние задания
Домашнее задание 1 доступно по ссылке, дедлайн 14 марта 23:59.
Домашнее задание 2 — доступно по ссылке, дедлайн 24 марта 23:59.
Контрольная работа
Контрольная работа прошла онлайн 22 марта в 16:00.
Экзамен
Прошёл онлайн 28 марта, 11:00-16:00 в устной форме, в каждом билете один вопрос из первой половины программы и один вопрос из второй половины программы.
Правила выставления оценок
Итоговая оценка вычисляется по формуле
- Округление(0.15*ДЗ1 + 0.15*ДЗ2 + 0.3*КР + 0.4*ЭК),
где ДЗ1 – оценка за домашнее задание №1, ДЗ2 – оценка за домашнее задание №2, КР – оценка за контрольную работу и ЭК – оценка за устный экзамен.
Округление арифметическое.
Блокирующих элементов контроля в курсе нет. Автоматы не выставляются. Оценка на комиссии выставляется по результатам ответа без учета других элементов контроля.
Список литературы
Рекомендуемая основная литература:
[1] Дж.Дэвенпорт, И.Сирэ и Э.Турнье. Компьютерная алгебра. Системы и алгоритмы алгебраических вычислений. М.: Мир, 1991
[2] Д.Кокс, Дж.Литтл, Д.О’Ши. Идеалы, многообразия и алгоритмы. Введение в вычислительные аспекты алгебраической геометрии и коммутативной алгебры. М.: Мир, 2000
[3] Р.Лидл, Г.Нидеррайтер. Конечные поля, в 2-х т. М.: Мир, 1988
[4] V.Ene and J.Herzog. Groebner Bases in Commutative Algebra. Graduate Studies in Mathematics 130, American Mathematical Society, Providence, RI, 2011
Рекомендуемая дополнительная литература:
[1] А.Акритас. Основы компьютерной алгебры с приложениями. М.: Мир, 1994
[2] Э.Б. Винберг. Курс алгебры (4-е издание). М.: МЦНМО, 2019
[3] С.Г.Влэдуц, Д.Ю.Ногин и М.А.Цфасман. Алгеброгеометрические коды. М.: МЦНМО, 2003
[4] В.В.Прасолов. Многочлены. М.: МНЦМО, 2003
[5] А.Ромащенко, А.Румянцев и А.Шень. Заметки по теории кодирования (2-е издание). М.: МЦНМО, 2017
[6] Сборник задач по алгебре под редакцией А.И. Кострикина. Новое издание. М.: МЦНМО, 2009
[7] T.Becker, H.Kredel, V.Weispfenning. Groebner Bases: A Computational Approach to Commutative Algebra. Graduate Texts in Mathematics, Springer, 1993
[9] D.Cox, J.Little, D.O'Shea. Using Algebraic Geometry. 2nd Edition. Graduate Texts in Mathematics, vol. 185, Springer, 2005
[10] B.Sturmfels. Groebner Bases and Convex Polytopes. University Lecture Series, vol. 8, American Mathematical Society, Providence, RI, 1996