Машинное обучение 2/2023 2024
Содержание
О курсе
Курс читается для студентов 3-го курса ПМИ ФКН ВШЭ в 3-4 модулях.
Проводится с 2016 года.
Лектор: Соколов Евгений Андреевич
Лекции проходят по пятницам, 11:10 - 12:30, в zoom.
Полезные ссылки
Репозиторий с материалами на GitHub
Почта для сдачи домашних заданий (на самом деле задания сдаются в AnyTask, но если он не работает, то присылайте на почту): hse.cs.ml+<номер группы>@gmail.com (например, hse.cs.ml+161@gmail.com)
Канал в telegram для объявлений: https://t.me/+wqFgR0wndUszNGIy
Чат в telegram для обсуждений (предназначение чата до конца не ясно, вопросы может быть правильнее задавать в чатах групп): https://t.me/+uALHcjfF6mw1NDJi
Ссылка на курс в Anytask:
Плейлист с записями занятий: https://youtube.com/playlist?list=PLEwK9wdS5g0rILWZFPEnw0a1VZgo2e5ax&si=Ctg7z6mZII8_TBeA
Оставить отзыв на курс: форма
Вопросы по курсу можно задавать на почту курса, а также в телеграм лектору (esokolov@) или семинаристу. Вопросы по материалам лекций/семинаров и по заданиям лучше всего оформлять в виде Issue в github-репозитории курса.
Семинары
Группа | Преподаватель | Учебный ассистент |
---|---|---|
211 (МОП) | [Морозов Никита Витальевич] | Жуматаев Жанту, Петров Олег |
212 (МОП) | Соколов Евгений Андреевич | Кеммер Анастасия, Юдин Николай, Грицаев Тимофей |
213 (МОП) | [Баранов Михаил] | Дмитриева Екатерина |
Курс по выбору (онлайн) | Ульянкин Филипп @ppilif | Перепелкин Владимир, Иванов Данил, Трофименко Илья |
Курс по выбору (очно) | Абрахам Максим | Петренко Максим, Аксенов Антон |
Правила выставления оценок
В курсе предусмотрено несколько форм контроля знания:
- Самостоятельные работы на семинарах, проверяющие знание основных фактов с лекций
- Практические домашние работы на Python
- Устный коллоквиум
- Письменный экзамен
Итоговая оценка вычисляется на основе оценки за работу в семестре и оценки за экзамен:
Итог = Округление(0.4 * ДЗ + 0.2 * К + 0.1 * ПР + 0.3 * Э)
ПР — средняя оценка за самостоятельные работы на семинарах
ДЗ — средняя оценка за практические домашние работы на Python
К — оценка за коллоквиум
Э — оценка за экзамен
Округление арифметическое.
Правила сдачи заданий
За каждый день просрочки после мягкого дедлайна снимается 1 балл. После жёсткого дедлайна работы не принимаются. Даже при опоздании на одну секунду. Сдавайте заранее.
Два раза студент может сдать домашнее задание после мягкого дедлайна (но до жёсткого) без штрафов.
При обнаружении плагиата оценки за домашнее задание обнуляются всем задействованным в списывании студентам, а также подаётся докладная записка в деканат. Следует помнить, что при повторном списывании деканат имеет право отчислить студента.
При наличии уважительной причины пропущенную проверочную можно написать позднее, а дедлайн по домашнему заданию может быть перенесён. Дедлайн по домашнему заданию переносится на количество дней, равное продолжительности уважительной причины. Решение о том, является ли причина уважительной, принимает исключительно учебный офис.
Лекции
Ко всем конспектам на GitHub есть исходники. Исправления и дополнения всячески приветствуются!
Лекция 1 (12 января). Ядровые методы [Конспект] [Запись лекции]
Семинары
Теоретические задания
Теоретические ДЗ не проверяются, но задачи из них могут войти в проверочные работы на семинарах.
Практические задания
Проект
Одной из форм контроля является проект. Результатом выполнения проекта должен быть отчёт, содержащий в себе:
- Описание задачи
- Описание методов
- Описание данных, на которых проводились эксперименты
- Подробное описание экспериментов и результатов
- Анализ результатов и выводы
Не нужно писать формальный текст — будет здорово, если у вас получится интересная и доступная обзорная статья.
За проект можно получить до 5 бонусных баллов. Если получится совсем потрясающе — то и до 10 баллов.
Темы проектов: будут объявлены позже
Можно предлагать свои темы — их нужно вписать в ту же табличку. Такие темы нужно согласовать с лектором.
По умолчанию каждую тему может взять одна команда из 2-3 студентов. По согласованию с лектором одну тему может взять несколько команд.
Дедлайн сдачи отчёта и кода: 13 июня 23:59.
Коллоквиум
На каждого студента отводится 20 минут. За это время он должен ответить на 3 вопроса из теоретического минимума и решить задачу. Каждый вопрос из теоретического минимума "стоит" 7/3 балла, задача — 3 балла. Время на подготовку не предусмотрено.
Экзамен
Полезные материалы
Книги
- Hastie T., Tibshirani R, Friedman J. The Elements of Statistical Learning (2nd edition). Springer, 2009.
- Bishop C. M. Pattern Recognition and Machine Learning. Springer, 2006.
- Mohri M., Rostamizadeh A., Talwalkar A. Foundations of Machine Learning. MIT Press, 2012.
- Murphy K. Machine Learning: A Probabilistic Perspective. MIT Press, 2012.
- Mohammed J. Zaki, Wagner Meira Jr. Data Mining and Analysis. Fundamental Concepts and Algorithms. Cambridge University Press, 2014.
- Willi Richert, Luis Pedro Coelho. Building Machine Learning Systems with Python. Packt Publishing, 2013.
Курсы по машинному обучению и анализу данных
- Курс по машинному обучению К.В. Воронцова
- Видеозаписи лекций курса Школы Анализа Данных, К.В. Воронцов
- Coursera: Машинное обучение от статистики до нейросетей (специализация)
- Coursera: Машинное обучение и анализ данных (специализация)
- Coursera: Введение в машинное обучение, К.В. Воронцов