Математическое моделирование 22

Материал из Wiki - Факультет компьютерных наук
Версия от 12:49, 8 января 2022; Emaevskiy (обсуждение | вклад)

(разн.) ← Предыдущая | Текущая версия (разн.) | Следующая → (разн.)
Перейти к: навигация, поиск

О курсе

Данный курс Математическое моделирование читается во 2-ом семестре 2021/2022 учебного года на Факультете компьютерных наук НИУ ВШЭ для специализации Математическая инженерия.

Курс состоит из следующих перемежающихся друг с другом разделов:

  • собственно модели (вариационное исчисление, дифференциальная геометрия, физика),
  • точные методы исследования моделей (алгебраические, аналитические),
  • численные методы исследования моделей.

Рассчитан на 1 семестр (2 модуля).

Область знаний, которую можно было бы назвать математическим моделированием, изучает как сами математические модели, так и общие закономерности их построения и методы анализа.

Как известно, любая наука в процессе своего становления проходит путь от классификации изучаемых объектов (примеры таких классификаций мы можем видеть в астрономии, биологии, химии) к их математическому описанию. По мнению А.Н. Уайтхеда: всякая наука по мере развития и совершенствования ее методов становится математической в своих основных понятиях.

Наиболее долгий и плодотворный путь в этом направлении прошла физика, влиянием которой проникнуты многие разделы математики. Можно даже сказать, что математика и физика развивались параллельно, взаимно обогащая друг друга идеями и методами. Поэтому выбор физики как плацдарма для курса математического моделирования вполне закономерен. С другой стороны, конечно, математическое моделирование не есть физика. Мы берем из физики лишь сами модели, оставляя физикам мотивировки и интерпретации.

План курса

I. Предмет математического моделирования

II. Вариационное исчисление

III. Дифференциальная геометрия

IV. Уравнения в частных производных математической физики

V. Задача Коши для УрЧП

VI. Краевые задачи

VII. УрЧП 2-го порядка

VIII. Метод малого параметра

Занятия

Записи лекций и семинаров выкладываются в [ плейлист]

Текущие оценки за доклады и вопросы к ним в [ гугл-таблице]

Экзамен

На экзамен выносится материал курса в рамках минимальных знаний и навыков - смотрите выше.