Discrete Mathematics DSBA 2021/2022

Материал из Wiki - Факультет компьютерных наук
Перейти к: навигация, поиск

Exam

Colloquium

Current performance

Course materials

Lecture notes

https://drive.google.com/file/d/1mmNLLQ0--EDihGNRKwSyXLOA1KL7A0lD/view?usp=sharing

Lecture video archive

https://youtube.com/playlist?list=PLEwK9wdS5g0pk-1YWDc3hezRt_rNpQDf8

Other resources

Problem sets

Class problems

Homework problems

Assignment deadlines

Group 211

  • HW1 --- September 26.

Group 214

Задание Срок сдачи в группе 204 в GoogleClass
Problems 1 2 3 4 5 6 7 8 9 10
Homework Set 1 24.09 24.09 24.09 1.10 1.10 1.10 - - - -

Other resources

Professors and assistants

The lecturer

My name is Evgeny Dashkov. Feel free to contact me via email: edashkov@gmail.com, Telegram, or VK.

Seminar instructors

Group 201 202 203 204
Teachers Evgeny Dashkov Boris Danilov Trofimova Anastasia
Assistants Arseny Kazankov Jan Maksimov Archipov Nikolay Marianna Kouis
Lecturer’s assistant Daria Ivanova

Grading system

Intermediate grade-2 = (1/3) test-1 + (1/3) colloquium-2 + (1/3) homework-2.

Cumulative grade-3 = (3/10) test-1 + (3/10) colloquium-2 + (4/10) homework-3.

Final grade-3 = min(10, (7/10) cumulative grade-3 + (3/10) final exam + (1/10) bonus points).

The number in a grade’s name is the number of the module when grading takes place. The grade homework-n is the normalized average grade for the homework in Modules from 1 to n. The Intermediate and Final grades are subject to rounding half up to an integer. All the other grades are reported with the greatest precision available.

Bonus point number is between 0 to 20. Such points may be given for a variety of auxiliary activities.

Recommended reading

Please notice that The Book for our Course does not exist. The latter is based on many sources.

  1. Anderson J. A., Discrete Mathematics With Combinatorics. Prentice Hall, 2003.
  2. Biggs N. L., Discrete mathematics. 2nd ed., New York; Oxford: Oxford University Press, 2004.
  3. Gavrilov G. P., Sapozhenko A. A. Problems and Exercises in Discrete Mathematics. Kluwer Texts in the Mathematical Sciences 14. Springer, 1996.
  4. Lehman E., Thomson Leighton F., Meyer A. R. Mathematics for Computer Science, 2017.
  5. Lovasz L., Vesztergombi K. Discrete Mathematics. Lecture Notes; Yale University, 1999.
  6. Melnikov O., Sarvanov V., Tyshkevich R., Yemelichev V., Zverovich I. Exercises in Graph Theory. Kluwer Texts in the Mathematical Sciences 19. Springer, 1998.
  7. Rosen K. H. Discrete Mathematics and Its Applications. McGraw-Hill, 1999.
  8. Stein C., Drysdale R. L., Bogart K. Discrete mathematics for computer scientists. Addison-Wesley, 2010.
  9. Vinogradov I. M. Elements of number theory. Dover, 1954.

In Russian

If you understand Russian (by any chance), you will probably benefit from reading the following books.

  1. Виноградов И. М. Основы теории чисел. 9-е изд., М.: Наука, 1981.
  2. Вялый М., Подольский В., Рубцов А., Шварц Д., Шень А. Лекции по дискретной математике.
  3. Гаврилов Г. П., Сапоженко А. А. Задачи и упражнения по дискретной математике. 3-е изд., М.: ФИЗМАТЛИТ, 2004.
  4. Дашков Е. В. Введение в математическую логику. Множества и отношения. М.: МФТИ, 2019.
  5. Зубков А. М., Севастьянов Б. А., Чистяков В. П. Сборник задач по теории вероятностей. 2-е изд., М.: Наука, 1989.
  6. Мельников О. И. Теория графов в занимательных задачах. 5-е изд., М.: Книжный дом "ЛИБРОКОМ", 2013.
  7. Шень А., Математическая индукция. 5-е изд, М.: МЦНМО, 2016.