Матричные вычисления 20/21

Материал из Wiki - Факультет компьютерных наук
Перейти к: навигация, поиск

О курсе

Курс по выбору для студентов для студентов 3 и 4 курса в 1-2 модулях.

Лектор: Рахуба Максим Владимирович

Лекции проходят на Покровке по вторникам в ауд. D510 (09:30 - 10:50)

Семинарист: Высоцкий Лев Игоревич

Семинары проходят онлайн по пятницам (13:00 - 14:20) Ссылка на регулярную Zoom-конференцию: https://zoom.us/j/91934043735

Полезные ссылки

Телеграм-канал курса: https://t.me/joinchat/AAAAAFkvC-gUnDmoK-YY2w

Телеграм-чат курса: https://t.me/joinchat/AiDEvBgUTMjcfkWpD8NMWA

Anytask курса: https://anytask.org/course/706

План курса

Еженедельные тесты

На каждом семинаре (начиная с первого) будет проходить десятиминутный тест по теме последней лекции.

Лекции

1. Некоторые понятия матричного анализа

Матричные нормы. Сохранение длин и унитарные матрицы. Разложение Шура. Нормальные матрицы.

Домашние задания

Домашнее задание 1 Основы матричного анализа

Выдается: 02.09.20 Дедлайн: 17.09.20 в 21:59

Контрольная работа

Проведение: предварительно - вторая неделя 2-го модуля

Экзамен

Устный экзамен в аудитории, разрешается пользоваться рукописным листком А4 при подготовке.

Итоговая оценка за курс

Итог = Округление(min(10, 0.4 * ДЗ + 0.1 * Б + 0.1 * ПР + 0.2 * КР + 0.3 * Э))

ДЗ –– средняя оценка за домашние задания Б –– средняя оценка за бонусные задачи в ДЗ ПР — средняя оценка за самостоятельные работы на семинарах КР –– оценка за контрольную работу (проводится в первой половине 2-го модуля) Э –– устный экзамен

Округление арифметическое

Автоматы не предусмотрены

Литература

1) Golub, G. H., & Van Loan, C. F. (2013). Matrix Computations 4th Edition. The Johns Hopkins University Press. Baltimore.

2) Тыртышников, Е. Е. (2007). Методы численного анализа. Академия, Москва.

3) Trefethen, L. N., & Bau III, D. (1997). Numerical linear algebra. (Vol. 50). Siam. Philadelphia.