CCTI 2020

Материал из Wiki - Факультет компьютерных наук
Перейти к: навигация, поиск

Содержание

Сложность вычислений и логика в теоретической информатике (3-ий курс ТИ) 2020 год

Лекции проходят по вторникам 15:10-16:30, семинары 16:40-18:00 по ссылке https://zoom.us/j/461361055

Первая лекция и семинар 21 января.

Новости

21 апреля

Платформа webinar.ru оказалась неудобной для наших лекций. Начиная со следующего вторника мы возвращаемся в Zoom https://zoom.us/j/461361055 Но теперь в конце или середине каждой лекции будет экспресс-тест на 10 минут, проводимый с помощью Гугл-формы. Те, кто заработают за тесты более половины максимально возможного количества баллов, получат 1 бонусный балл к итоговой оценке. Оценки за тесты выставляются в обычную ведомость https://www.dropbox.com/s/akpdy4oyflgd6zi/results_2020.xlsx?dl=0 Сссылка на лекции и семинары: https://zoom.us/j/461361055

28 марта

Согласно приказу ректора, все занятия 31 марта отменяются!

21 марта

Лекция 24 марта (вторник) в 15:10-16:30 состоится в виде вебинара. Вот ссылка на вебинар: https://zoom.us/j/912901893 Преимущество вебинара перед Ютуб трансляцией в том, что удобнее задавать вопросы по ходу лекции (это можно делать и устно, и письменно).

20 марта

Весенняя сессия отменяется, поэтому лекция и семинар 31 марта состоятся.

16 марта

C 17 марта 2020 года ВШЭ перешла на дистанционное обучение (карантинная мера, вызванная распостранением коронавируса). Лекции курса будут транслироваться и записываться в обычное время (по вторникам с 15:10 до 16:30) на Ютуб канале https://www.youtube.com/channel/UCQpMy-jk_5qdi91U9NsBVdQ?view_as=subscriber

Во время трансляции можно задавать вопросы в чате, на которые лектор сможет отвечать примерно с полминутной задержкой. Очередная трансляция состоится 17 марта.

Лекция 17 марта

Лектор

Верещагин Николай Константинович, nikolay.vereshchagin@gmail.com

Семинарист

Милованов Алексей Сергеевич almas239@gmail.com

Консультации (защиты): по вторникам 14-15, 18-19 и по средам 15.10-16 в S832.

Краткое описание

Экспандеры и их применения:теорема Рейнгольда о разрешимости связности для неориентированных графов на логарифмической памяти, экспандерные коды.

Коды с исправлением ошибок для компьютерных наук.

Представление булевых функций деревьями разрешения и многочленами.

Разрешимость элементарных теорий упорядоченного поля действительных чисел (теорема Тарского-Зайденберга и поля комплексных чисел.

Отчётность по курсу и критерии оценки

4 домашних задания, коллоквиум и экзамен.

Оценка за каждое домашнее задание равна доле решенных задач, умноженной на 10. Общая оценка за домашние задания равна среднему арифметическому оценок за решение каждого из заданий. Кроме этого в домашних задания могут бонусные задачи, за решение которых даются дополнительные баллы на коллоквиуме или экзамене (1 задача= 1 балл). На решение каждого ДЗ дается 14 дней, решение ДЗ нужно сдавать семинаристу до начала семинара. Сдача домашних заданий после их срока невозможна.

Каждое ДЗ будет проверено в течение 10 дней после дедлайна. Домашнее задание должно быть защищено в течение 3 недель после дедлайна. Для защиты студент должен прийти на консультацию и убедить преподавателя, что он понимает, что у него написано, и тем самым работа не списана.

Коллоквиум (устный) и экзамен (письменный) оцениваются по десятибалльной системе. На коллоквиуме не разрешается пользоваться никакими записями. На экзамене можно пользоваться любыми бумажными источниками и нельзя никакими электронными.

Оценки за коллоквиум и экзамен входят в итоговую оценку с коэффициентами 0.4, а оценка за домашние задания - с коэффициентом 0.2.

Те, кто не смог прийти на экзамен или коллоквиум по болезни, могут его сдать их отдельно. Не набравшие в конце второго модуля нужное количество баллов (4) могут пересдать экзамен, а если и это не поможет, то сдавать экзамен комиссии. В последнем случае накопленная оценка аннулируется и оценка, полученная на экзамене, и является окончательной.

Правила округления

В вычислениях текущие оценки и промежуточные величины не округляются. Результат вычисляется точно и округляется (арифметически) только в момент выставления итоговой оценок.

Коллоквиум

Экзамен

Пересдачи

Примерные сроки контрольных мероприятий

Первое домашнее будет выложено 29.1.2020, срок сдачи 11.2.2020.

Второе домашнее будет выложено 3.3.2020, срок сдачи 31.3.2020.

Третье домашнее будет выложено 24.4.2020, срок сдачи 19.5.2020.

Четвертое домашнее будет выложено 14.5.2020, срок сдачи 26.5.2020.

Домашние задания

[ Домашнее задание 1.] Cрок сдачи 12.2.2020 в 12:10 MSK.

Домашнее задание 2 Срок сдачи 7.4.2020 в 16.40 MSK.

Домашнее задание 3 Срок сдачи 19.5.2020 в 16.40 MSK.

Результаты

Результаты

Прочитанные лекции

Лекция 1 (21 января).

Определение комбинаторного однородного экспандера. Существование (вероятностное доказательство). Реберное расширение и его связь с вершинным расширением. Матрица графа и ее собственные числа.

Лекция 2 (28 января).

Максимальное по абсолютной величине собственное число регулярного графа. От чего зависит кратность собственного числа d. Второе по абсолютной величине собственное число двудольного графа.

Лемма о перемешивании. От спектрального экспандера к комбинаторному.

Лекция 3 (4 февраля).

Вторая лемма о перемешивании. Нижняя оценка sqrt(d) на второе собственное число d-регулярного графа.

Лекция 4 (11 февраля).

Формула для числа Каталана. Вероятностное доказательство существования d-регулярного спектрального экспандера с d^c вершинами.

Лекция 5 (18 февраля).

Степень графа и тензорное произведение графов и их собственные числа. Зигзаг-произведение графов и первая оценка его собственных чисел. Первая рекурсивная конструкция спектрального экспандера со сколь угодно большим количеством вершин.

Лекция 6 (25 февраля).

Вторая рекурсивная конструкция спектрального экспандера со сколь угодно большим количеством вершин. Вторая оценка для спектральной щели зигзаг-произведения.

Лекция 7 (3 марта).

Второе собственное число связного недвудольного графа.

Алгоритм Рейнгольда.

Лекция 8 (10 марта).

Применение экспандеров для дерандомизации.

Лекция 9 (17 марта).

Экспандер Маргулиса.

Лекция 10 (24 марта).

Двудольные экспандеры: определение и вероятностное доказательство существования.

Лекция 11 (7 апреля).

Экспандер Варди - Парвареша.

Лекция 12 (14 апреля).

Коды с исправлением ошибок и их параметры. Линейные коды. Оценка Синглтона и коды Рида - Соломона. Декодирование кодов Рида - Соломона за полиномиальное время.

Лекция 13 (21 апреля).

Линейные коды, проверочная матрица. Оценка Хэмминга и коды Хэмминга. Кодирование и декодирование для кодов Хэмминга. https://events.webinar.ru/event/4301788/4390364

Лекция 14 (28 апреля)

Оценка Гилберта. Функция Шеннона. Графики оценок Хэмминга и Гилберта. Оценка Варшамова - Гилберта. Случайные линейные коды.

Результаты теста 2

Лекция 15 (12 мая)

Коды Возенкрафта. Каскадные коды. Декодирование каскадного кода.

Результаты теста 3.

Лекция 16. (19 мая)

Декодирование каскадного кода и коды Форни. Экспандерные коды: определение, последовательный алгоритм декодирования.

Результаты теста 4

Планируемые лекции

Лекция 17 (26 мая)

Оценки Плоткина и коды Адамара. Декодирование списком и теорема Левина - Голдрайха.

Лекция 18(2 июня )

Деревья разрешения, метод противника. Сертификатная и недетерминированная сложность. Чувстительность и блочная чувствительность. Неравенства D < C_0 C_1, D< C_0 bs_1

Лекция 19 (9 июня).

Неравенство C_0< bs_0 s_1. Вероятностные деревья и неравенство bs = O(R)

Представление булевых функций многочленами с действительными коэффициентами. Теорема Маркова.

Лекция

Связь между блочной чувствительностью и степенью многочлена (Нисан - Сегеди).

Связь между глубиной дерева и представлением функции в виде m,k-ДНФ и m,k-КНФ

Связь между глубиной дерева и представлением функции в виде m,k-ДНФ и m,k-КНФ (Эренфойхт - Хауслер).

Лекция .

Разрешимость элементарной теории поля комплексных чисел.

Лекция .

Разрешимость элементарной теории упорядоченного поля действительных чисел.

Задачи для семинаров

Листок 1 (комбинаторные экспандеры)


Листок 2 (спектр графов)

Листок 3

Листок 4

Листок 5

Листок 6

Листок 7

Листок 8

Листок 9

Листок 10

Листок 11

Листок 12

Листок 13

Листок 14

Листок 15

Семинары

Семинар 1 (21 января)

Разобраны задачи 1-6 из первого листка.

Семинар 2 (4 февраля)

Разобраны задачи 1--5 из второго листка.

Семинар 3 (11 февраля)

Разобраны задачи 1--2 из третьего листка

Семинар 4 (18 февраля)

Разобраны задачи 1--2 из четвёртого листка

Семинар 5 (25 февраля)

Разобраны задачи 1--3 из пятого листка

Семинар 6 (3 марта)

Разобраны задачи 1--3 из шестого листка

Семинар 7 (10 марта)

Разобраны задачи 1--3 из седьмого листка

Семинар 8 (17 марта)

Разобраны задачи 1--4 из восьмого листка https://www.youtube.com/watch?v=3Kg6yDvRnt0&feature=youtu.be PDF доски

Семинар 9 (24 марта)

Разобраны задачи 1--3 из девятого листка

Семинар 10 (7 апреля)

Разобраны задачи 1--2 из десятого листка

Семинар 11 (14 апреля)

Разобраны задачa 1 из одиннадцатого листка


Семинар 12 (21 апреля)

https://drive.google.com/file/d/1mGv-CEO8_xd9wuygFOHs8vnyHqKVlCuJ/view?usp=sharing Разобраны задачи 1,2,4 из двенадцатого листка


Семинар 13 (28 апреля)

Разобраны задачи 1--5 из тринадцатого листка

Семинар 14 (12 мая)

Разобраны задачи 1--2 из четырнадцатого листка

Конспекты лекций

Конспекты лекций об экспандерах, полученные переработкой книги Ромащенко

Конспект лекций о деревьях разрешения.

Конспект лекций о кодах с исправлением ошибок (переработанная версия брошюры Ромащенко, Румянцева, Шеня. "Заметки по теории кодирования."

Рекомендуемая литература

А.Е. Ромащенко. Экспандеры: конструкции и приложения.

Noam Nisan, Mario Szegedy. On the Degree of Boolean Functions as Real Polynomials. Computational Complexity 4(4) · January 1995

Ivan Petrenko. Sensitivity for dummies (решение Sensitivity conjecture).

N. Nisan, CREW PRAM's and decision trees, STOC 1989, pages 327-335.

Alexander Razborov, Nikolay Vereshchagin. One Property of Cross-Intersecting Families. ECCC TR99-014. https://eccc.weizmann.ac.il/report/1999/014/