LAaG DSBA 2019/2020

Материал из Wiki - Факультет компьютерных наук
Перейти к: навигация, поиск

Teachers and assistants

Group 191 (M+P+) 192 193
Lecturer Mazhuga Andrey
Teacher Mazhuga Andrey Nikita Medved
Consultations Fr, 15:10 -- 16:30, room S808
One must notify me beforehand
TBD
Assistant Рамазян Тигран
taramazyan@edu.hse.ru
Анищенко Илья
iianischenko@edu.hse.ru
Таранцова Полина
pdtarantsova@edu.hse.ru
Course
Assistant
Фоменко Мария
somethingneverending@gmail.com

Course Description

The course introduces students to the elements of linear algebra and analytic geometry, provides the foundations for understanding some of the main concepts of modern mathematics. There is a strong emphasis in this course on complete proofs of almost all results.

We will approach the subject from both a practical point of view (learning methods and acquiring computational skills relevant for problem solving) and a theoretical point of view (learning a more abstract and theoretical approach that focuses on achieving a deep understanding of the different abstract concepts).

Topics covered include: matrix algebra, systems of linear equations, permutations, determinants, complex numbers, fields, abstract vector spaces, bilinear and quadratic forms, Euclidean spaces, some elements of analytic geometry, linear operators. It took mathematicians at least two hundred years to comprehend these objects. We plan to accomplish this in one year.

Grading system

During the academic year, the student will be formally graded on the following:

  • two in-class oral tests (O1 and O2);
  • two in-class written tests (W1 and W2);
  • several quizzes (Q1 and Q2, where Qi is the average grade of all the quizzes in the i-th semester);
  • several homework assignments (H1 and H2, where Hi is the average grade of all the homework assignments in the i-th semester);
  • two written exams (E1 and E2).

All grades (namely, O1, O2, W1, W2, Q1, Q2, H1, H2, E1, and E2) are real numbers from 0 to 10.

The cumulative course grade for the first semester, C1, is obtained without rounding by the following formula:

C1 = 8/28*O1 + 8/28*W1 + 7/28*Q1 + 5/28*H1.

The intermediate course grade for the first semester, I1, is obtained by the following formula:

I1 = Round1(3/10*E1 + 7/10*C1),

where the function Round1(x) is defined as follows: if the decimal part of x is less than 0.2, the grade is rounded downwards; if the decimal part of x is greater than 0.6, the grade is rounded upwards; if the decimal part of x is from the interval [0.2;0.6] and the student's seminar attendance during the first semester is not below 60%, the grade is rounded upwards; otherwise the grade is rounded downwards.

The cumulative course grade for the second semester, C2, is obtained without rounding by the following formula:

C2 = 8/28*O2 + 8/28*W2 + 7/28*Q2 + 5/28*H2.

The intermediate course grade for the first semester, I2, is obtained by the following formula:

I2 = Round2(3/10*E2 + 7/10*C2),

where the function Round2(x) is defined as Round1(x) but with "during the first semester" replaced by "during the second semester".

The final grade for the course, F, is obtained by the following formula:

F = Round(1/4*I1 + 3/4*I2),

where the function Round(x) is defined as Round1(x) but with "during the first semester" replaced by "during the academic year".

The final grade for the course is included in a diploma supplement.

Lecture notes

Below, one can find the lecture notes:

Module 3

  • Lecture 22 (06.03.2020) Linear operators (Part II); vector space of linear operators; the characteristic polynomial of a linear operator; algebraic and geometric multiplicity of an eigenvalue.
  • Lecture 21 (28.02.2020) Linear operators; the rank, the determinant, and the trace of a linear operator; invariant subspaces; eigenvectors and eigenvalues of a linear operator.
  • Lecture 20 (21.02.2020) Linear Transformations (Part III: injectivity and surjectivity of linear transformations) injective and surjective linear transformations; isomorphisms (=linear bijections) of vector spaces; the inverse of an isomorphism; the fact that two finite dimensional vector spaces are isomorphic if and only if they both have the same dimension.
  • Lecture 19 (14.02.2020) Linear Transformations (Part II: matrix representation and change of basis); coordinate matrices of a linear transformation; coordinate matrix of a composition of linear transformations; change of basis.
  • Lecture 18 (07.02.2020) Linear Transformations; main properties of linear transformations; the image and the kernel of a linear transformation; singular and non-singular linear transformations; the rank and the nullity of a linear transformation.
  • Lecture 17 (31.01.2020) The rank of a matrix (Part II); we prove that the column rank equals the row rank.
  • Lecture 16 (24.01.2020) The direct sum of subspaces; main properties of the direct sum; the rank of a matrix; column and row spaces of a matrix; column and row ranks of a matrix.
  • Lecture 15 (10.01.2020) Main properties of change of basis matrices; the sum, the intersection, and the direct sum of vector subspaces; the dimension of the sum of two vector subspaces.

Module 2

  • Lecture 14 (20.12.2019) Vector spaces (Part III); m-element subsets of an n-dimensional vector space; extension to a basis; the dimension of a subspace of a finite dimensional vector space; ordered basis; basis matrix; change of basis matrix.
  • Lecture 13 (13.12.2019) Vector spaces (Part II); Main theorem on linear dependence; a basis of a vector space; dimension of a vector space; finite and infinite dimensional vector spaces; some main properties of finite dimensional vector spaces.
  • Lecture 12 (29.11.2019) Vector spaces; a subspace of a vector space; linear combinations; the linear span; trivial and non-trivial linear combinations; linearly dependent and linearly independent sets.
  • Lecture 11 (22.11.2019) Polynomials; the degree of a polynomial; division with remainder; a root of a polynomial; factor theorem; the multiplicity of a root; algebraically closed fields; fundamental theorem of algebra; interpolation polynomials in the Lagrange form.
  • Lecture 10 (15.11.2019) Complex numbers (part II); main properties of the conjugate and the absolute value of a complex number; polar (= trigonometric) form of a complex number; de Moivre's Formula; the set of n-th roots of a complex number, its description.
  • Lecture 9 (09.11.2019) The determinant of a Vandermonde matrix; fields; the field of complex munbers; Crtesian and algebraic forms of a complex number; the absolute value (=module) and the argument of a complex number, the complex conjugate.
  • Lecture 8 (01.11.2019) Block matrices; the determinant of block matrices; minors and cofactors of a matrix; Laplace expansion; false expansion; the adjugate of a matrix; Cramer's rule.

Module 1

  • Lecture 7 (18.10.2019) Determinant of an elementary matrix; determinant of a product of matrices; determinant test for invertibility.
  • Lecture 6 (11.10.2019) Determinant; the Leibniz Formula; Sarrus' Rule; determinant of matrix transpose; three main properties of the determinant; the determinant of a matrix with a zero row or column.
  • Lecture 5 (04.10.2019) Permutations; two-line notation of a permutation; the sign of a permutation; even and odd permutation; itanspositions.
  • Lecture 4 (27.09.2019) Systems of linear equations (SoLE); homogeneous, inhomogeneous, consistent, and inconsistent SoLE; the matrix form of a SoLE; leading and free variables; the augmented matrix of a SoLE; a general algorithm for solving SoLE.
  • Lecture 3 (20.09.2019) Elementary row matrix operations; elementary matrices; elementary row operations as matrix pre-multiplication; reduced row echelon form; Gaussian elimination.
  • Lecture 2 (13.09.2019) Matrix transposition; symmetric and skew-symetric matrices; inverse of a matrix; invertible (non-singular) matrices; the trace of a matrix; main properties of matrix transposition, matrix inverse, and the trace.
  • Lecture 1 (05.09.2019) Matrices, main definitions; special matrices (square matrices, triangular matrices, identity matrices, zero matrices); matrix scalar multiplication; matrix addition; matrix multiplication; main properties of these operations.

All lectures in one file:

Exams

Exam 1

Date: 26.12.2019

Room: R401

Time: from 16:40 to 19:30 (the duration of the exam is 90 min.)

A list of example problems is here. The problems from the list indicate the possible topics and estimated difficulty of the problems on the exam. The exam itself is going to contain not all those types of problems, but instead just several (selected from different themes). This list of problems may be slightly updated, but we do not expect to need this.

In-Class Tests

The Second In-Class Written Test

Date: 04.04.2020

Room: ??

Time: from ?? to ?? (the duration of the test is 90 min.)

The First In-Class Written Test

Date: 22.10.2019

Room: R401

Time: from 13:30 to 16:30 (the duration of the test is 90 min.)

A list of example problems is here. The problems from the list indicate the possible topics and estimated difficulty of the problems on the test. The test itself is going to contain not all those types of problems, but instead just several (selected from different themes). This list of problems may be slightly updated, but we do not expect to need this.

Quizzes

  • Zero Variant this variant should help you to understand what you need to prepare for.

Homework submission forms

Group 191 (M+P+) 192 193
URL https://forms.gle/k6YjiLfLMW6szD2o8 TBD https://forms.gle/uqrzLf8CdZJsv1ss8

Problem sheets

Module 3

The obligatory homework for group 191:

  • HW 22 (release: 08.03.2020; deadline: 13.03.2020)
  • HW 21 (release: 01.03.2020; deadline: 06.03.2020)
  • HW 20 (release: 23.02.2020; deadline: 28.02.2020)
  • HW 19 (release: 15.02.2020; deadline: 21.02.2020)
  • HW 18 (release: 08.02.2020; deadline: 14.02.2020)
  • HW 17 (release: 01.02.2020; deadline: 07.02.2020)
  • HW 16 (release: 25.01.2020; deadline: 31.01.2020)
  • HW 15 (release: 11.01.2020; deadline: 17.01.2020)

The obligatory homework for groups 192 and 193:

  • HW N4 (release: 21.02.2020; deadline: 28.02.2020)
  • HW N3 (release: 09.02.2020; deadline: 19.02.2020)
  • HW N2 (release: 31.01.2020; deadline: 14.02.2020)
  • HW N1 (release: 31.01.2020; deadline: 07.02.2020)

Module 2

The obligatory homework for group 191:

  • HW 13 (release: 15.12.2019; deadline: 20.12.2019)
  • HW 12 (release: 01.12.2019; deadline: 06.12.2019)
  • HW 11 (release: 24.11.2019; deadline: 29.11.2019)
  • HW 10 (release: 17.11.2019; deadline: 22.11.2019)
  • HW 9 (release: 09.11.2019; deadline: 15.11.2019)
  • HW 8 (release: 02.11.2019; deadline: 08.11.2019)

The obligatory homework for groups 192 and 193:

  • HW 13 was skipped because of the oral test.
  • HW 12 (release: 02.12.2019; deadline: 09.12.2019)
  • HW 11 (release: 24.11.2019; deadline: 02.12.2019)
  • HW 10 (release: 17.11.2019; deadline: 22.11.2019)
  • HW 9 (release: 10.11.2019; deadline: 15.11.2019)
  • HW 8 (release: 03.11.2019; deadline: 08.11.2019)


Module 1

The obligatory homework for group 191:

  • HW 7 (release: 19.11.2019; deadline: 01.11.2019)
  • HW 6 (release: 11.11.2019; deadline: 18.10.2019)
  • HW 5 (release: 04.11.2019; deadline: 11.10.2019)
  • HW 4 (release: 27.09.2019; deadline: 04.10.2019)
  • HW 3 (release: 20.09.2019; deadline: 27.09.2019)
  • HW 2 (release: 13.09.2019; deadline: 20.09.2019)
  • HW 1 (release: 06.09.2019; deadline: 13.09.2019)

The obligatory homework for groups 192 and 193:

  • HW 7 was skipped.
  • HW 6 (release: 13.11.2019; deadline: 18.10.2019)
  • HW 5 (release: 04.11.2019; deadline: 11.10.2019)
  • HW 4 (release: 29.09.2019; deadline: 04.10.2019)
  • HW 3 (release: 20.09.2019; deadline: 27.09.2019)
  • HW 2 (release: 13.09.2019; deadline: 20.09.2019)
  • HW 1 (release: 06.09.2019; deadline: 13.09.2019)

Results

In-Class Written and Oral Tests

191 192 193

Quizzes and HWs:

191 192 193