Линейная алгебра и геометрия на ПМИ 2019/2020 (основной поток)

Материал из Wiki - Факультет компьютерных наук
Перейти к: навигация, поиск

Преподаватели и учебные ассистенты

Группа БПМИ193 БПМИ195 БПМИ196 БПМИ197 БПМИ198 БПМИ199 БПМИ1910 БПМИ1911 БПМИ1912
Лектор Роман Авдеев
Семинарист Дима Трушин Роман Авдеев Сергей Гайфуллин Айбек Аланов Антон Шафаревич Дарья Эдуардовна Алексеева Сергей Смирнов Станислав Федотов
Ассистент Сабина Даянова Мария Школьник Сергей Петрович Дмитрий Воронецкий Лев Ходжоян Константин Руденский Артём Цыганов Илья Анищенко Антон Медведев

Расписание консультаций

Преподаватель/ассистент понедельник вторник среда четверг пятница
1
Роман Авдеев 15:40–17:40, ауд. S829
2
Дима Трушин 15:10–16:30, ауд. D107
3
Сергей Гайфуллин 15:10–16:30, ауд. S913
4
Айбек Аланов 15:10–16:30, ауд. ??
5
Антон Шафаревич 16:30–18:00, ауд. G003
6
Дарья Алексеева
7
Сергей Смирнов
8
Станислав Федотов
9
Сабина Даянова 15:10, ауд. R407
10
Мария Школьник
11
Сергей Петрович 15:10, ауд.??
12
Дмитрий Воронецкий 16:40 (по предварительной просьбе)
13
Лев Ходжоян 18:00, ауд.??
14
Константин Руденский 15:00, ауд. S324
15
Артём Цыганов 16:30, ауд. S324
16
Илья Анищенко 13:40–15:00, ауд. пока ищется
17
Антон Медведев 13:40–15:00, ауд. D201

Формы контроля знаний студентов

  • Коллоквиум
  • Контрольная работа
  • Большие домашние задания (делящиеся на индивидуальные домашние задания и лабораторные работы)
  • Активность и работа на семинарах
  • Экзамен

Бонус:

  • Устная сдача задач из листков

Порядок формирования итоговой оценки

2-й модуль

Итоговая оценка за 1-2 модули вычисляется по формуле

Oитоговая = min(10; 0,4*Oэкз + 0,22*Oколл + 0,16*Oк/р + 0,16*Oд/з + 0,08*Oсем + 0,08*Oл),

где Oэкз — оценка за экзамен, Oколл — оценка за коллоквиум, Oк/р — оценка за контрольную работу, Oд/з — оценка за большие домашние задания, Oсем — оценка за работу на семинарах и Oл — оценка за сдачу задач из листков.

Все вычисления по указанной формуле используют неокруглённые значения промежуточных оценок. Способ округления итоговой оценки — арифметический.

Краткое содержание лекций

Лекция 1 (9.09.2019). Матрицы. Равенство матриц. Операции сложения и умножения на скаляр для матриц, свойства этих операций. Пространство R^n, его отождествление с матрицами-столбцами высоты n. Транспонирование матриц, его простейшие свойства. Умножение матриц, примеры.

Лекция 2 (12.09.2019). Основные свойства умножения матриц. Некоммутативность умножения матриц. Диагонали квадратной матрицы. Диагональные матрицы. Умножение на диагональную матрицу слева и справа. Единичная матрица и её свойства. След квадратной матрицы и его свойства. Системы линейных уравнений. Матричная форма записи системы линейных уравнений. Совместные и несовместные системы.

Лекция 3 (14.09.2019). Расширенная матрицы системы линейных уравнений. Эквивалентные системы. Элементарные преобразования системы линейных уравнений и соответствующие преобразования строк её расширенной матрицы. Сохранение множества решений системы линейных уравнений при элементарных преобразованиях. Ступенчатые матрицы. Улучшенный ступенчатый вид матрицы. Приведение матрицы к ступенчатому виду элементарными преобразованиями строк. Приведение ступенчатой матрицы к улучшенному ступенчатому виду элементарными преобразованиями строк. Реализация элементарных преобразований строк матрицы при помощи умножения слева на подходящую матрицу.

Лекция 4 (19.09.2019). Метод Гаусса решения систем линейных уравнений. Главные и свободные неизвестные. Общее решение системы линейных уравнений. Однородные системы линейных уравнений. Существование ненулевого решения у однородной системы линейных уравнений, в которой число неизвестных больше, чем число уравнений. Связь между множеством решений системы линейных уравнений и множеством решений соответствующей однородной системы. Матричные уравнения вида AX=B и XA = B, общий метод их решения. Определение обратной матрицы. Обратная матрица как решение уравнения AX=E (пока без доказательства). Определение перестановки на множестве {1,2,...,n}.

Лекция 5 (23.09.2019). Инверсии в перестановке. Знак и чётность перестановки. Произведение перестановок. Ассоциативность произведения перестановок. Теорема о знаке произведения перестановок. Тождественная перестановка. Обратная перестановка и её знак. Транспозиции, знак транспозиции. Определитель квадратной матрицы. Определители порядков 2 и 3.

Лекция 6 (26.09.2019). Определитель транспонированной матрицы. Определитель матрицы со строкой (столбцом) нулей. Поведение определителя при умножении строки (столбца) на число и при разложении строки (столбца) в сумму двух строк (столбцов). Определитель матрицы с двумя одинаковыми строками (столбцами). Поведение определителя при прибавлении к строке (столбцу) другой, умноженной на число. Изменение знака определителя при перестановке двух строк (столбцов). Верхнетреугольные и нижнетреугольные матрицы, их определители.

Лекция 7 (30.09.2019). Определитель с углом нулей. Определитель произведения матриц. Дополнительные миноры и алгебраические дополнения к элементам квадратной матрицы. Лемма об определителе матрицы, содержащей ровно один ненулевой элемент в некоторой строке. Разложение определителя по строке (столбцу). Лемма о фальшивом разложении определителя. Обратная матрица, её единственность. Невырожденные матрицы. Определитель обратной матрицы. Присоединённая матрица. Критерий обратимости квадратной матрицы, явная формула для обратной матрицы.

Листки с задачами

Задачи из листков можно сдавать любому семинаристу по данному предмету (в том числе с пилотного потока) в часы его консультаций или по договорённости.

Правила сдачи и оценивания задач из листков:

  • каждый пункт в листке считается отдельной задачей
  • сдача задачи возможна только при наличии её решения в письменном виде
  • результатом сдачи одной задачи может быть 0 или 1

Листок 1. Матричные алгебры Ли

Сроки сдачи листка 1:

задачи принимаются в период с момента выдачи листка по 19 октября включительно

в период с 14 по 19 октября включительно одному студенту разрешается сдать не более шести задач

Ведомости текущего контроля

Результаты сдачи задач из листков

193 195 196 197 198 199 1910 1911 1912

Литература

Учебники

  • А.И. Кострикин. Введение в алгебру. Часть I. Основы алгебры. М.: Физматлит, 1994
  • А.И. Кострикин. Введение в алгебру. Часть II. Линейная алгебра. М.: Физматлит, 2000
  • Э.Б. Винберг. Курс алгебры. М.: Факториал, 1999 (или любое последующее издание)
  • А.А. Михалёв, А.В. Михалёв. Начала алгебры. Часть I. М.: Интернет-университет информационных технологий, 2005

Сборники задач

  • И.В. Проскуряков. Сборник задач по линейной алгебре (любое издание, например М.: БИНОМ, 2005)
  • Сборник задач по алгебре под редакцией А.Н. Кострикина. Новое издание. М.: МЦНМО, 2009.
  • Г.Д. Ким, Л.В. Крицков. Алгебра и аналитическая геометрия. Теоремы и задачи. Том I. М.: "Планета знаний", 2007.