Алгебра на ПМИ 2018/2019 (основной поток)
Содержание
Преподаватели и учебные ассистенты
Группа | БПМИ183 | БПМИ185 | БПМИ186 | БПМИ187 | БПМИ188 | БПМИ189 |
---|---|---|---|---|---|---|
Лектор | Роман Сергеевич Авдеев | |||||
Семинарист | Дмитрий Витальевич Трушин | Роман Сергеевич Авдеев | Сергей Александрович Гайфуллин | Станислав Николаевич Федотов | Антон Андреевич Шафаревич | Роман Сергеевич Авдеев |
Ассистент | Никита Башаев | Наталья Доброхотова-Майкова | Марат Саидов | Лев Ходжоян | Аделина Бакиева | Андрей Гусев |
Расписание консультаций
Преподаватель/ассистент | понедельник | вторник | среда | четверг | пятница | |
---|---|---|---|---|---|---|
|
Роман Сергеевич Авдеев | 15:40–17:40, ауд. 623 | 15:40–16:30, 18:10–19:00, ауд. 623 | |||
|
Дмитрий Витальевич Трушин | |||||
|
Сергей Александрович Гайфуллин | 18:10–19:30, ауд. 623 | ||||
|
Станислав Николаевич Федотов | |||||
|
Антон Андреевич Шафаревич | |||||
|
Никита Башаев | 12:10–13:30 | ||||
|
Наталья Доброхотова-Майкова | 18:10–19:30, ауд. 300 | ||||
|
Марат Саидов | 16:30–18:00 | ||||
|
Лев Ходжоян | 13:40–18:00 | ||||
|
Аделина Бакиева | 13:40–15:00, ауд. 618 | ||||
|
Андрей Гусев | 18:10–19:30, ауд. 304 |
Порядок формирования оценок
Накопленная оценка вычисляется по следующей формуле:
Oнакопленная = 0,6 * Oдз + 0,4 * Oк/р,
где Oдз1 — оценка за домашние задания, Oк/р — оценка за контрольную работу.
Итоговая оценка выражается через накопленную и оценку за экзамен следующим образом:
Oитоговая = 0,5 * Oнакопленная + 0,5 * Оэкз.
Округление производится только для итоговой оценки. Способ округления — арифметический.
Краткое содержание лекций
Лекция 1 (1.04.2019). Бинарные операции. Полугруппы, моноиды, группы, коммутативные (абелевы) группы. Порядок группы. Примеры групп. Подгруппы. Описание всех подгрупп в группе целых чисел по сложению. Циклические подгруппы. Порядок элемента группы. Связь между порядком элемента и порядком порождаемой им циклической подгруппы. Циклические группы. Левые смежные классы группы по подгруппе, разбиение группы на левые смежные классы. Индекс подгруппы, теорема Лагранжа.
Листки с задачами
Листок с задачами к лекции N содержит в себе N-е домашнее задание.
Контрольная работа
Экзамен
Формат экзамена: устный, по билетам (в каждом по два вопроса из программы)
Ведомости текущего контроля
183 | 185 | 186 | 187 | 188 | 189 |
---|
Литература
- Э.Б. Винберг. Курс алгебры. М.: Факториал Пресс, 2002.
- А.И. Кострикин. Введение в алгебру. Основы алгебры. М.: Наука. Физматлит, 1994.
- А.И. Кострикин. Введение в алгебру. Основные структуры алгебры. М.: Наука. Физматлит, 2000.
- Сборник задач по алгебре под редакцией А.Н. Кострикина. Новое издание. М.: МЦНМО, 2009.
- Р. Лидл, Г. Нидеррайтер. Конечные поля (2 тома). М.: Мир, 1988.
- И.В. Аржанцев. Базисы Грёбнера и системы алгебраических уравнений. М.: МЦНМО, 2003.