Алгебра на ПМИ 2018/2019 (основной поток)

Материал из Wiki - Факультет компьютерных наук
Версия от 09:35, 31 марта 2019; Ravdeev (обсуждение | вклад)

(разн.) ← Предыдущая | Текущая версия (разн.) | Следующая → (разн.)
Перейти к: навигация, поиск

Преподаватели и учебные ассистенты

Группа БПМИ183 БПМИ185 БПМИ186 БПМИ187 БПМИ188 БПМИ189
Лектор Роман Сергеевич Авдеев
Семинарист Дмитрий Витальевич Трушин Роман Сергеевич Авдеев Сергей Александрович Гайфуллин Станислав Николаевич Федотов Антон Андреевич Шафаревич Роман Сергеевич Авдеев
Ассистент Никита Башаев Наталья Доброхотова-Майкова Марат Саидов Лев Ходжоян Аделина Бакиева Андрей Гусев

Расписание консультаций

Преподаватель/ассистент понедельник вторник среда четверг пятница
1
Роман Сергеевич Авдеев 15:40–17:40, ауд. 623 15:40–16:30, 18:10–19:00, ауд. 623
2
Дмитрий Витальевич Трушин
3
Сергей Александрович Гайфуллин
4
Станислав Николаевич Федотов
5
Антон Андреевич Шафаревич
6
Никита Башаев
7
Наталья Доброхотова-Майкова
8
Марат Саидов
9
Лев Ходжоян
10
Аделина Бакиева
11
Андрей Гусев

Порядок формирования оценок

Накопленная оценка вычисляется по следующей формуле:

Oнакопленная = 0,6 * Oдз + 0,4 * Oк/р,

где Oдз1 — оценка за домашние задания, Oк/р — оценка за контрольную работу.

Итоговая оценка выражается через накопленную и оценку за экзамен следующим образом:

Oитоговая = 0,5 * Oнакопленная + 0,5 * Оэкз.

Округление производится только для итоговой оценки. Способ округления — арифметический.

Краткое содержание лекций

Листки с задачами

Листок с задачами к лекции N содержит в себе N-е домашнее задание.

Контрольная работа

Экзамен

Формат экзамена: устный, по билетам (в каждом по два вопроса из программы)

Ведомости текущего контроля

Литература

  • Э.Б. Винберг. Курс алгебры. М.: Факториал Пресс, 2002.
  • А.И. Кострикин. Введение в алгебру. Основы алгебры. М.: Наука. Физматлит, 1994.
  • А.И. Кострикин. Введение в алгебру. Основные структуры алгебры. М.: Наука. Физматлит, 2000.
  • Сборник задач по алгебре под редакцией А.Н. Кострикина. Новое издание. М.: МЦНМО, 2009.
  • Р. Лидл, Г. Нидеррайтер. Конечные поля (2 тома). М.: Мир, 1988.
  • И.В. Аржанцев. Базисы Грёбнера и системы алгебраических уравнений. М.: МЦНМО, 2003.