Statistical learning theory 2018 2019
General Information
The syllabus
Deadline homework 1: October 2nd. Questions: see seminars 3 and 4.
Deadline homework 2: October 27nd.
Deadline homework 3: TBA.
Intermediate exams: Oktober 29th.
Course materials
Date | Summary | Lecture notes | Problem list | Solutions |
---|---|---|---|---|
3 sept | PAC-learning in the realizable setting definitions | lecture1.pdf updated 23/09 | Problem list 1 | |
10 sept | VC-dimension and growth functions | lecture2.pdf updated 23/09 | Problem list 2 | |
17 sept | Proof that finite VC-dimension implies PAC-learnability | lecture3.pdf updated 23/09 | Problem list 3 | |
24 sept | Applications to decision trees and threshold neural networks. Agnostic PAC-learnability. | lecture4.pdf | Problem list 4 | |
1 oct | Agnostic PAC-learnability is equivalent with finite VC-dimension, structural risk minimization | lecture5.pdf 12/10 | Problem list 5 |
A gentle introduction to the materials of the first 3 lectures and an overview of probability theory, can be found in chapters 1-6 and 11-12 of the following book: Sanjeev Kulkarni and Gilbert Harman: An Elementary Introduction to Statistical Learning Theory, 2012.
Afterward, we hope to cover chapters 1-8 from the book: Foundations of machine learning, Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalker, 2012. These books can be downloaded from http://gen.lib.rus.ec/ .
Office hours
Person | Monday | Tuesday | Wednesday | Thursday | Friday | |
---|---|---|---|---|---|---|
Bruno Bauwens | 16:45–19:00 | 15:05–18:00 | Room 620 |
Russian texts
The following links might help students who have trouble with English. A lecture on VC-dimensions was given by K. Vorontsov. A course on Statistical Learning Theory by Nikita Zhivotovsky is given at MIPT. Some short description about PAC learning on p136 in the book ``Наука и искусство построения алгоритмов, которые извлекают знания из данных, Петер Флах. On machinelearning.ru you can find brief and clear definitions.