Машинное обучение на матфаке 2021
Содержание
О курсе
Курс читается для студентов факультета математики ВШЭ в 3-4 модулях.
Лектор: Щуров Илья Валерьевич
Лекции проходят по четвергам в 11:10-12:30.
Полезные ссылки
- Чат курса
- Телеграм канал с объявлениями
- Курс на Anytask (информацию про инвайт спрашивайте семинаристов)
- GitHub репозиторий с материалами курса
- РПУД
Семинары
Группа | Преподаватель | Учебный ассистент | Расписание |
---|---|---|---|
1 | Руслан Хайдуров | Максим Бекетов | пятница 13:00-14:20 |
2 | Соня Дымченко | Павел Егоров | четверг 13:00-14:20 |
Система оценивания
Формула оценки
Результирующая оценка по дисциплине рассчитывается по формуле:
Oитог = 0.2 * Окр + 0.29 * Опрак дз + 0.29 * Отеор дз + 0.22 * Оэкз
Правила вычисления оценок
Оценка за практические/теоретические домашние задания вычисляется как сумма баллов по всем практическим/теоретическим домашним заданиям, переведенная в 10-балльную шкалу. Количество баллов за разные задания может различаться в зависимости от их сложности. Все промежуточные оценки (за домашние, контрольную и экзамен) могут быть не целыми и не округляются. Итоговая оценка округляется по стандартным правилам, оценка вида (k+1/2), где k — целое число округляется вверх.
Правила сдачи заданий
Если вы сдаёте работу позже срока, её оценка умножается на exp(-t / 86400), где t — число секунд, прошедшее с дедлайна. Иными словами, опоздать на пару секунд не страшно, но опоздав на сутки, вы поделите свой результат на e. Сдать после срока можно только один раз, а если вы сдали работу вовремя, досдать после срока какие-либо задачи уже нельзя. Это не касается соревнований: там есть жесткое время окончания соревнования, и после него уже ничего отправить нельзя.
Все письменные работы выполняются самостоятельно. Вам запрещено смотреть в чужие решения (в том числе в чужой код), до тех пор, пока вы не сделали и не сдали эту задачу сами. Это касается решений и кода, написанного вашими однокурсниками, написанного предшествующими поколениями или найденного где-либо ещё. Из этого, в частности, следует, что вам запрещено целенаправленно искать решение вашей задачи в интернете. (Хотя, конечно, вы можете использовать поиск в интернете, чтобы разобраться в том, как работают те или иные инструменты или как сделать конкретное действие, если это действие не является само по себе решением задачи.) Вам также запрещено показывают свои решения другим студентам. При обнаружении плагиата или иных нарушений академической этики оценки за соответствующее домашнее задание обнуляются всем задействованным в списывании студентам, а также подаётся докладная записка в деканат.
При наличии уважительной причины (предоставляется справка, подтвержденная учебным офисом) вес контрольной работы может быть перенесён на экзамен; также может быть перенесён дедлайн по домашнему заданию (за исключением соревнований).
Теоретические домашние задания можно сдавать в виде Jupyter Notebook (.ipynb; там поддерживаются формулы в LaTeX), в виде отдельных PDF-документов, набранных в LaTeX или с помощью любого другого инструмента, поддерживающего вёрстку формул, либо в виде аккуратного скана аккуратно написанного от руки решения, также в формате PDF. В случае, если решение написано неаккуратно с точки зрения проверяющего, работа может получить штраф в 5% от оценки, либо, если работа вызывает существенные трудности для чтения, отправлена на доработку без продления срока сдачи.
Новости курса
Лекции
№ | Дата | Название | Материалы |
---|---|---|---|
1 | 14 января | Введение в ml, постановки задач, виды данных | видео |
2 | 21 января | Статистическая теория принятия решений | видео |
3 | 28 января | Шум, смещение, разброс | видео |
Семинары
№ | Дата | Название | Материалы | Видео |
---|---|---|---|---|
1 | 14/15 января | Введение в numpy, pandas, matplotlib | github colab | семинар Сони Дымченко |
2 | 21/22 января | k-NN | github nbviewer colab | семинар Сони Дымченко, семинар Ильи Щурова |
Как корректно скачать файл с расширением .ipynb с GitHub?
Домашние задания
Домашние задания сдаются в энитаск (ссылка выше). Инвайт: g1laCLh
№ | тема и условие | тип | дата выдачи | дедлайн | комментарий |
---|---|---|---|---|---|
0 | Теория вероятностей: условие | теоретическое | 14.01 | 20.01 23:59:59 | |
1 | Бибилотеки Python: numpy, pandas, matplotlib: условие | практическое | 14.01 | 24.01 23:59:59 |
Полезные материалы
Базовые учебники
- Hastie T., Tibshirani R, Friedman J. The Elements of Statistical Learning (2nd edition). Springer, 2009.
- Bishop C. M. Pattern Recognition and Machine Learning. Springer, 2006.
Дополнительная литература
- Шарден Б., Массарон Л., Боскетти А. Крупномасштабное машинное обучение вместе с Python, Издательство "ДМК Пресс", 2018.
- Ian Goodfellow and Yoshua Bengio and Aaron Courville, Deep Learning, MIT Press, 2016.
- Mohri M., Rostamizadeh A., Talwalkar A. Foundations of Machine Learning. MIT Press, 2012.
- Murphy K. Machine Learning: A Probabilistic Perspective. MIT Press, 2012.
- Mohammed J. Zaki, Wagner Meira Jr. Data Mining and Analysis. Fundamental Concepts and Algorithms. Cambridge University Press, 2014.
Разные хорошие ссылки
- Об условных вероятностях.
- Mathematics for Machine Learning — книга с математическим введением в машинное обучение. Вам могут быть особенно интересно главы про теорию вероятностей.