Algebra DSBA 2018/2019

Материал из Wiki - Факультет компьютерных наук
Перейти к: навигация, поиск

Teachers and assistants

Группа 181 182 183
Lecturer Ivan Arzhantsev
Teacher Ivan Arzhantsev Roman Avdeev Nikita Medved

mednik at mccme.ru

Assistant Danila Kutenin kutdanila at yandex.ru Maksim Siplivyj maxsev1999@yandex.ru Ildus Sadrtdinov

irsadrtdinov@edu.hse.ru

Consultations schedule

Teacher/Assistant Monday Tuesday Wednesday Thursday Friday
1
Ivan Arzhantsev 17:00–18:30, room 603
2
Roman Avdeev 15:40–17:40, room 623 15:40–16:30, 18:10–19:00, room 623
3
Nikita Medved 16:40–18:00, room 623 18:10 (if you write me beforehand)
4
Danila Kutenin 12:00-13:00, room (each time telegram announcement)
5
Maksim Siplivyj 16:40–18:00
6
Ildus Sadrtdinov 16:40–18:00

Grading system

The cumulative grade is computed as follows:

C = 0,6 * H + 0,4 * T,

where H is the grade for the home assignments and T is the written test grade.

The final course grade is given by

F = 0,5 * C + 0,5 * E

where E is the final exam grade.

Grades in all formulas are rounded according to the standard rule.

Lecture abstracts

Lecture 1 (2.04.2019). Semigroups and groups: definitions and examples. Permutation groups and matrix groups. Subgroups. The order of an element and cyclic subgroups.

Lecture 2 (9.04.2019). Lagrange's theorem and its corollaries. Normal subgroups. Homomorphisms and isomorphisms. A classification of cyclic groups. Factor groups and the Homomorphism theorem.

Lecture 3 (16.04.2019). The homomorphism theorem. The center and direct products of groups. Theorem on factorization of direct products and factorization of finite cyclic groups.

Lecture 4 (23.04.2019). Free abelian groups and their subgroups. Stacked bases. An algorithm for transforming an integer matrix to a diagonal form. Classification of finite abelian groups. The exponent of a finite abelian group.

Lecture 5 (30.04.2019). Actions of a group on a set. Orbits and stabilizers. Transitive actions and free actions. Three actions of a group on itself. Conjugacy classes. Cayley's Theorem.

Lecture 6 (14.05.2019). Rings and fields. Zero divisors, invertible elements, nilpotents and idempotents. Ideals. Principal ideals. Factor rings and the Homomorphism Theorem.

Lecture 7 (21.05.2019). Polynomials in several variables. Symmetric polynomials. The lexicographic order. Elementary symmetric polynomials. The main theorem on symmetric polynomials. Vieta's formulas. The discriminant.

Lecture 8 (28.05.2019). Polynomials in one variable over a field. Greatest common divisor. Irreducible polynomials. Unique factorization property. Description of ideals. Properties of factor rings.

Problem sheets

The Nth problem sheet contains the Nth homework.

Problems to lecture 1

Problems to lecture 2

Problems to lecture 3

Problems to lecture 4

Problems to lecture 5

Problems to lecture 6

Problems to lecture 7

Problems to lecture 8

Problems to lecture 9

Written test

Exam

The exam will be oral.

Results

181 182 183

Reading list

Required

  • Э.Б.Винберг. Курс алгебры. М.: МЦНМО, 2014 (English transl.: Ernest Vinberg. A Course in Algebra. Graduate Studies in Math. 56, Amer. Math. Soc., 2003)
  • Сборник задач по алгебре под редакцией А.И.Кострикина. Новое издание. М.: МЦНМО, 2015 (English transl.: Exercises in Algebra. Edited by A. Kostrikin, CRC Press, 1996)

Optional

Serge Lang. Algebra. Revised Third Edition. Graduate Texts in Math. 211, Springer, 2002