Ask me (семинар)
Описание проекта, последнее занятие.
Содержание
Правила игры
- Ментор: Симагин Денис.
- Место: офис Яндекса (место встречи)
- Время: c 10:00, каждый четверг.
Общение с ментором вне занятий приветствуется. Можно задавать вопросы, в том числе философские. Но перед тем, как написать, попробуйте спросить это у Яндекса. Также не обижайтесь, если в ответ вам пришла ссылка на документацию или какую-то статью.
Ключевые точки
Сверху нам спущены ключевые точки выполнения проекта. Для нас они скорее явлются формальными, тем не менее мы должны их соблюдать.
- 12-17 декабря - все включились в работу
- 20-25 марта - реализован объем работ, необходимый для зачета
- 30 мая - 3 июня - окончание проектной работы, вы готовы, как пионеры.
- начало июня - конкурс проектов.
Правило 2Х
У вас есть право на одну ошибку. Следующая - я отказываюсь с вами работать.
Репозитории
Студенты хранят свой код в следующих репозиториях
Лабораторные
Лабораторные проводятся для практического закрепления материала. Их выполнение учитывается в итоговой оценке.
- Результатом работы является jupyter notebook, где сохранен вывод вашего кода, графики и т.п. А так же его импорт в формат .py. Для автоматизации процесса можно настроить jupyter.
- Когда сроки выполнения лабораторной завершены, вы выкладываете ее на ревью, создавая соответствующее задание и запрос на объединение ветки с мастером (не забудьте добавить проверяющего).
- Ваш коллега проводит ревью кода и может оставлять замечания, как в виде комментариев к заданию, так и в файле .py. Оно предполагает проверку стиля и правильность кода, а также конструктивные замечания по производительности. Однако не стремитесь сразу оптимизировать код. Добейтесь лучше того, чтобы все работало правильно.
- Когда ревью завершено, влейтесь в мастер и закройте задание.
Результаты
Текущие результаты можно найти здесь. Оценка складывается из нескольких частей:
- Работа на семинаре
- Доклад статьи
- Итоговый результат
Семинары
S24.11
1. Регуляризация:
- Разобрали L1 и L2 регуляризаторы, можно найти здесь.
- Используйте простые классификаторы
- Раняя остановка (смотрим качество на отложенном множестве)
- Добавление шума
- Комбинирование классификаторов
2. Полносвязанные сети:
- Множественная классификация и softmax.
- Метод обратного распространения ошибки, проблема при обучении.
- Инициализация весов: и xavier и другие вариации.
- Кратко о dropout.
S03.11
- Признаки и какие они бывают. Об отборе признаков, кратко тут. Может помочь на конкурсе.
- Задача бинарной классификации.
- Градиентный спуск.
- Стохастический градиентный спуск. На английской вике больше интересной информации.
Для дополнительного чтения:
- Что полезно знать о машинном обучении.
- Английская вика про признаки
- Отбор признаков.
- Мощная теоретическая работа про стохастический градиентный спуск.
L1
Ревьюер | Разработчик | Оценка |
---|---|---|
Рябинин | Попов | 10 |
Попов | Остяков | |
Остяков | Когтенков | |
Когтенков | Ширин | |
Ширин | Рябинин |
Для первой лабораторной работы вам потребуется:
- Настроить себе pip для Python3
- Освоить Jupyter notebook
- Установить пакеты scipy: numpy, scipy, matplotlib