Основы глубинного обучения

Материал из Wiki - Факультет компьютерных наук
Перейти к: навигация, поиск

О курсе

Курс читается для студентов 3-го курса майнора ИАД в 1-2 модулях.

Проводится с 2015 года.

Лектор — Соколов Евгений Андреевич

Занятия проходят онлайн по четвергам на второй паре (11:10 - 12:30).

Полезные ссылки

Карточка курса и программа

Репозиторий с материалами: https://github.com/hse-ds/iad-deep-learning

Домашние задание сдаются в Anytask:

Канал в telegram для объявлений: https://t.me/hs_iad_2021

Чат в telegram (осторожно, риск флуда и отсутствия ответов на содержательные вопросы): https://t.me/joinchat/Vuq4Lgi98RG22fQP

Таблица с оценками

Вопросы по курсу можно задавать в телеграм лектору (@esokolov), семинаристу, в чатах групп или в issues на гитхабе.

Семинары

Группа Преподаватель Учебные ассистенты Zoom-конференция Ссылка на чат Инвайт в anytask
ИАД-1 Антон Семенкин Дарья Морозова, Михаил Никифоров Zoom Чат
ИАД-2 Алексей Ковалёв Zoom [ Чат]
ИАД-3 Кирилл Гельван Кирилл Тамогашев, Дарья Матяш Zoom Чат
ИАД-4 Михаил Гущин Аня Аксенова, Катя Такташева Zoom Чат
ИАД-5 Руслан Хайдуров Zoom [ Чат]
ИАД-6 Елена Кантонистова Елизавета Копышева Поликарпов Кирилл Zoom Чат
ИАД-7 Тамерлан Таболов Николай Аверьянов Сергей Тихонов Zoom Чат

Правила выставления оценок

В курсе предусмотрено несколько форм контроля знания:

  • Практические домашние работы на Python
  • Проверочные работы на лекциях
  • Контрольная где-то в середине курса
  • Письменный экзамен

Итоговая оценка вычисляется по формуле:

Округление(0.4 * ДЗ + 0.1 * ПР + 0.2 * КР + 0.3 * Э)

ДЗ — средняя оценка за практические домашние задания

ПР — средняя оценка за проверочные работы

КР — оценка за контрольную работу

Э — оценка за экзамен

Правила сдачи заданий

При обнаружении плагиата оценки за домашнее задание обнуляются всем задействованным в списывании студентам, а также подаётся докладная записка в деканат. Следует помнить, что при повторном списывании деканат имеет право отчислить студента.

При наличии уважительной причины дедлайн по домашнему заданию может быть перенесён. Дедлайн по домашнему заданию переносится на количество дней, равное продолжительности уважительной причины. Решение о том, является ли причина уважительной, принимает исключительно учебный офис.

Лекции

Семинары

Практические задания

Домашние задания выкладываются в репозиторий курса. За каждый день просрочки мягкого дедлайна снимается два балла. После жёсткого дедлайна задания не принимаются.

Контрольная работа

Экзамен

[Вопросы для подготовки]