Машинное обучение 1/2023 2024
Содержание
О курсе
Курс читается для студентов 3-го курса ПМИ ФКН ВШЭ в 1-2 модулях.
Проводится с 2016 года.
Лектор: Соколов Евгений Андреевич
Лекции проходят по пятницам, 10:30 - 11:50, ауд. 317.
Полезные ссылки
Репозиторий с материалами на GitHub
Почта для сдачи домашних заданий: hse.cs.ml+<номер группы>@gmail.com (например, hse.cs.ml+151@gmail.com)
Канал в telegram для объявлений: https://telegram.me/hse_cs_ml_course_2017
Чат в telegram для обсуждений: https://t.me/joinchat/A5rlQEQ7r16nvyHbyXtjNA
Оставить отзыв на курс: форма
Вопросы по курсу можно задавать на почту курса, а также в телеграм лектору (esokolov@) или семинаристу. Вопросы по материалам лекций/семинаров и по заданиям лучше всего оформлять в виде Issue в github-репозитории курса.
Семинары
Группа | Преподаватель | Учебный ассистент | Страница | Расписание |
---|---|---|---|---|
141 (МОП) | Зиннурова Эльвира Альбертовна | Атанов Андрей | пятница, 12:10 - 13:30, ауд. 300 | |
142 (МОП) | Неклюдов Кирилл Олегович | Гадецкий Артём | понедельник, 15:10 - 16:30, ауд. 505 | |
143 (АПР) | Никишин Евгений Сергеевич | Ковалёв Евгений | пятница, 12:10 - 13:30, ауд. 322 | |
144 (АДИС) | Каюмов Эмиль Марселевич | Панков Алексей | пятница, 12:10 - 13:30, ауд. 501 | |
145 (РС) | Яшков Даниил Дмитриевич | Кохтев Вадим | ||
145 (ТИ) | Умнов Алексей Витальевич | Шевченко Александр | ||
Магистратура ФТиАД | Чиркова Надежда Александровна | Першин Максим |
Консультации
Правила выставления оценок
В курсе предусмотрено несколько форм контроля знания:
- Самостоятельные работы на семинарах, проверяющие знание основных фактов с лекций
- Теоретические домашние работы и их защиты
- Практические домашние работы на Python
- Контрольные работы
- Письменный экзамен
Итоговая оценка вычисляется на основе оценки за работу в семестре и оценки за экзамен:
Oитоговая = 0.7 * Oнакопленная + 0.3 * Оэкз
Оценка за работу в семестре вычисляется по формуле
Oнакопленная = 0.1 * Oсамостоятельные + 0.4 * Опрактические дз + 0.3 * Отеоретические дз + 0.2 * Оконтрольные
Оценка за самостоятельную работу вычисляется как среднее по всем самостоятельным, оценка за домашнюю работу — как среднее по всем практическим заданиям и соревнованиям.
Правила сдачи заданий
Дедлайны по всем домашним заданиям являются жёсткими, то есть после срока работа не принимаются.
При обнаружении плагиата оценки за домашнее задание обнуляются всем задействованным в списывании студентам, а также подаётся докладная записка в деканат. Следует помнить, что при повторном списывании деканат имеет право отчислить студента.
При наличии уважительной причины пропущенную проверочную можно написать позднее, а дедлайн по домашнему заданию может быть перенесён (при этом получить дополнительные баллы за призовые места на конкурсе можно только при участии в общий срок). Дедлайн по домашнему заданию переносится на количество дней, равное продолжительности уважительной причины. Решение о том, является ли причина уважительной, принимает исключительно учебный офис.
Лекции
Лекция 1 (1 сентября). Введение в машинное обучение. Основные термины, постановки задач и примеры применения. [Конспект]
Семинары
Практические задания
Полезные материалы
Книги
- Hastie T., Tibshirani R, Friedman J. The Elements of Statistical Learning (2nd edition). Springer, 2009.
- Bishop C. M. Pattern Recognition and Machine Learning. Springer, 2006.
- Mohri M., Rostamizadeh A., Talwalkar A. Foundations of Machine Learning. MIT Press, 2012.
- Murphy K. Machine Learning: A Probabilistic Perspective. MIT Press, 2012.
- Mohammed J. Zaki, Wagner Meira Jr. Data Mining and Analysis. Fundamental Concepts and Algorithms. Cambridge University Press, 2014.
- Willi Richert, Luis Pedro Coelho. Building Machine Learning Systems with Python. Packt Publishing, 2013.
Курсы по машинному обучению и анализу данных
- Курс по машинному обучению К.В. Воронцова
- Видеозаписи лекций курса Школы Анализа Данных, К.В. Воронцов
- Coursera: Машинное обучение и анализ данных (специализация)
- Coursera: Введение в машинное обучение, К.В. Воронцов