MOTV 2025 — различия между версиями
Материал из Wiki - Факультет компьютерных наук
(Новая страница: «== Lecturers and Seminarists == {| class="wikitable" style="text-align:center" |- || Lecturer || [https://www.hse.ru/org/persons/77967 Vladimir Ulyanov ] || [] |…») |
(→Homeworks) |
||
| Строка 31: | Строка 31: | ||
== Homeworks == | == Homeworks == | ||
| + | Please send your solutions to kdyakovlev@hse.ru with the subject "MOTV25_HW1" | ||
| + | |||
| + | [https://disk.360.yandex.ru/i/wGlb15fA_BLkrA Homework #1, Deadline: October 10, 23:59] | ||
== Exam == | == Exam == | ||
Версия 16:46, 27 сентября 2025
Содержание
Lecturers and Seminarists
| Lecturer | Vladimir Ulyanov | [] | T924 |
| Seminarist | Yakovlev Konstantin | [kdyakovlev@hse.ru] | T904 |
| TA | Yakovlev Konstantin | [kdyakovlev@hse.ru] | T904 |
About the course
This page contains materials for the Mathematical Foundations of Probability theory course in 2024/2025, mandatory for 1st year Master students of the MML program (HSE and Skoltech). Please, join the Telegram Group.
Grading
The final grade consists of 2 components (each is non-negative real number from 0 to 10, without any intermediate rounding) :
- OHW for the hometasks
- OExam for the final exam
The formula for the final grade is
- OFinal = 0.5*OHW + 0.5*OExam
with the usual (arithmetical) rounding rule.
Lectures
Seminars
Homeworks
Please send your solutions to kdyakovlev@hse.ru with the subject "MOTV25_HW1"
Homework #1, Deadline: October 10, 23:59
Exam
Recommended literature
- https://59clc.files.wordpress.com/2012/05/paul_r-_halmos_measure_theory_graduate_texts_inbookfi-org.pdf - P. Halmos. Measure theory. Chapters 1-6;
- phys.nsu.ru/korobkov/Fudan_2018_Sobolev_Spaces/Measure-Theory-and-Fine-Properties-of-Functions-Revised-Edition.pdf - L. Evans. Measure theory and fine properties of functions. Chapter 1;
- https://diendantoanhoc.org/index.php?app=core&module=attach§ion=attach&attach_id=12514 - V. Bogachev. Measure theory. Chapters 1,2.
- https://www.youtube.com/watch?v=KRtrdtUI9YQ&list=PLhe7c-LCgl4IVzTaYL8kC-exzBJiJms2B - CMC MSU lectures (in russian!)
- https://link.springer.com/book/10.1007/978-3-030-61871-1 - Kallenberg O. Foundations of modern probability. – New York, NY : Springer New York, 1997.