Генеративные модели в машинном обучении (ИИ 2025) — различия между версиями
Материал из Wiki - Факультет компьютерных наук
| Строка 45: | Строка 45: | ||
|- | |- | ||
| − | | style="background:#eaecf0;" | '''3''' || Задача языкового моделирования, GPT, few-shot и zero-shot, инструктивное обучение || [Лекция] [Семинар] || [ | + | | style="background:#eaecf0;" | '''3''' || Задача языкового моделирования, GPT, few-shot и zero-shot, инструктивное обучение || [Лекция] [Семинар] || [Лекция] [Семинар]|| [https://www.youtube.com/watch?v=XvnC9B_hNt0 Лекция ПЗАД по GAN] и [https://github.com/hse-ds/iad-applied-ds/blob/master/2023/lectures/lecture01-gan.pdf слайды]; [https://pytorch.org/tutorials/beginner/dcgan_faces_tutorial.html туториал по DCGAN] от torch; [https://proceedings.neurips.cc/paper_files/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf оригинальная статья Яна Гудфеллоу]; [https://neerc.ifmo.ru/wiki/index.php?title=Generative_Adversarial_Nets_(GAN) Wiki ИТМО]; [https://education.yandex.ru/handbook/ml/article/generativno-sostyazatelnye-seti-(gan) глава из учебника Яндекса] |
|- | |- | ||
| − | | style="background:#eaecf0;" | '''4''' || | + | | style="background:#eaecf0;" | '''4''' || Технологии современных LLM (Rope, KV-cache), Reasoning, RAG, Open-source LLM|| [Лекция] [Семинар] || [Лекция] [Семинар] || [https://www.youtube.com/watch?v=aj1U36E_RZE&list=PLEwK9wdS5g0rLIiFuHwUuDuWKupHQrVJf&index=3 Лекция ПЗАД по NF] и [https://github.com/hse-ds/iad-applied-ds/blob/master/2023/lectures/lecture02-nf.pdf слайды]; [https://education.yandex.ru/handbook/ml/article/variational-autoencoder-(vae) глава учебника Яндекса про VAE], [https://www.youtube.com/watch?v=x6T1zMSE4Ts обзор] NVAE, [https://github.com/NVlabs/NVAE реализация] NVAE, [https://github.com/NVlabs/NVAE реализация] VAE на Habr; [https://education.yandex.ru/handbook/ml/article/normalizuyushie-potoki глава учебника Яндекса по NF], [https://lilianweng.github.io/posts/2018-10-13-flow-models/ заметки] о различных архитектурах NF, [https://github.com/VincentStimper/normalizing-flows репозиторий] с реализациями архитектур NF |
| − | + | ||
| − | + | ||
| − | + | ||
| − | + | ||
| − | + | ||
| − | + | ||
| − | + | ||
| − | + | ||
|} | |} | ||
Версия 22:18, 27 августа 2025
Содержание
О курсе
Курс читается в первом семестре студентам магистерской образовательной программы "Искусственный интеллект".
Канал и чат курса в ТГ: Чат
| Группа | Преподаватели | Zoom |
|---|---|---|
| Базовая | Тихонова Мария, Кантонистова Елена | [ Zoom] |
| Продвинутая | Карагодин Никита | [ Zoom] |
| Ассистенты |
|---|
| Прохоров Савелий |
| Охотин Даниил |
| Никифорова Соня-Аня |
Материалы курса
Ссылка на плейлист курса на VK: [ VK-playlist]
Ссылка на GitHub с материалами курса: GitHub
Ссылка на stepik: Stepik
Расписание базовой группы:
| Занятие | Тема | Записи лекций и семинаров | Материалы на гитхабе | Дополнительные материалы |
|---|---|---|---|---|
| 1 | Задача машинного перевода, механизм внимания, Transformer | [Лекция] [Семинар] | [Лекция] [Семинар] | Запись лекции про Attention и трансформеры на ИАДе, Слайды к ней; Attention is All You Need; The Illustrated Transformer; Visualizing Attention, a Transformer's Heart; |
| 2 | Токенизация, BERT, дообучение трансформерных моделей | [Лекция] [Семинар] | Тетрадка, Colab, Запись продвинутая | Кратко про BERT, GPT и T5 модели; The Illustrated BERT, ELMo, and co.; |
| 3 | Задача языкового моделирования, GPT, few-shot и zero-shot, инструктивное обучение | [Лекция] [Семинар] | [Лекция] [Семинар] | Лекция ПЗАД по GAN и слайды; туториал по DCGAN от torch; оригинальная статья Яна Гудфеллоу; Wiki ИТМО; глава из учебника Яндекса |
| 4 | Технологии современных LLM (Rope, KV-cache), Reasoning, RAG, Open-source LLM | [Лекция] [Семинар] | [Лекция] [Семинар] | Лекция ПЗАД по NF и слайды; глава учебника Яндекса про VAE, обзор NVAE, реализация NVAE, реализация VAE на Habr; глава учебника Яндекса по NF, заметки о различных архитектурах NF, репозиторий с реализациями архитектур NF |
Формула оценивания
Общая оценка: 0.6*ДЗ + 0.1*степик + 0.1*теормин + 0.2*Экз
Stepik
В оценку за Stepik идут только следующие модули:
Важно: Части степика с домашними заданиями делать не нужно (15.4, например). Но нужно ответить на квизы в других его частях (15.1, например).